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Extremal dynamics represents a path to self-organized criticality in which the order parameter is tuned to a
value of zero. The order parameter is associated with a phase transition to an absorbing state. Given a process
that exhibits a phase transition to an absorbing state, we define an “extremal absorbing” process, providing the
link to the associated extremalsnonabsorbingd process. Stationary properties of the latter correspond to those
at the absorbing-state phase transition in the former. Studying the absorbing version of an extremal dynamics
model allows to determine certain critical exponents that are not otherwise accessible. In the case of the
Bak-SneppensBSd model, the absorbing version is closely related to the “f-avalanche” introduced by Paczuski,
Maslov, and BakfPhys. Rev. E53, 414 s1996dg, or, in spreading simulations to the “BS branching process”
also studied by these authors. The corresponding nonextremal process belongs to the directed percolation
universality class. We revisit the absorbing BS model, obtaining refined estimates for the threshold and critical
exponents in one dimension. We also study an extremal version of the usual contact process, using mean-field
theory and simulation. The extremal condition slows the spread of activity and modifies the critical behavior
radically, defining an “extremal directed percolation” universality class of absorbing-state phase transitions.
Asymmetric updating is a relevant perturbation for this class, even though it is irrelevant for the corresponding
nonextremal class.
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I. INTRODUCTION

Extremal dynamics has been employed extensively in
modelling far from equilibrium systems such as biological
evolutionf1g and driven interfacesf2,3g. Although processes
with extremal dynamics do not have a phase transitionsthere
is no control parameterd they exhibit scaling properties remi-
niscent of those observed at continuous phase transitions
f4,5g. Indeed, it was suggested some time ago that the ap-
pearance of “self-organized” scaling properties in extremal
dynamics and in sandpile models corresponds to forcing the
order parametersassociated with an underlying phase transi-
tiond to zero from abovef6g. The connection between ex-
tremal dynamics and directed percolationsDPd, the prime
example of an absorbing-state phase transition, was first sug-
gested by Paczuski, Maslov, and Bakf4g and investigated in
detail by these authors in the context of the Bak-Sneppen
sBSd model and related processesf5g. sThe latter work, as
well as Ref.f7g, clearly demonstrated that the critical expo-
nents of the BS model arenot those of DP.d Sornette and
Dornic f8g and Grassberger and Zhangf9g have shown how a
variant of directed percolation may be transformed via ex-
tremal dynamics to display SOC. These studies indicate that
self-organized criticalitysSOCd f10g under extremal dynam-
ics arises because the system is driven to a critical point
associated with a phase transition to an absorbing statef8g,
as is also the case for sandpilesf11g.

The purpose of this work is to explore the connection
between scale invariance under extremal dynamics and phase

transitions to an absorbing state, in particular the transforma-
tion of a snonextremal, non-SOCd model having an absorb-
ing state to one exhibiting SOC under extremal dynamics.
We develop a general scheme relating the two classes of
models via an intermediate, “extremal-absorbing” process
whose absorbing-state critical point corresponds exactly to
the critical behavior observed in the corresponding SOC
model. Two examplessthe BS model and an extremal contact
processd are studied in detail, yielding refined estimates for
critical properties, and evidence of a universality class asso-
ciated with absorbing phase transitions under extremal dy-
namics.

The prime example of extremal dynamics is the BS model
f1,12g, proposed to explain mass extinctions observed in the
fossil record. While its application in the evolutionary con-
text is debatedf13g, it remains an intriguing and incom-
pletely understood example of scaling behavior far from
equilibrium. The contact processsCPd f14g is the most famil-
iar example of a Markov process exhibiting a phase transi-
tion to an absorbing state. We focus on the absorbing version
of the BS model, and the extremal version of the CP, to
illustrate the relations between extremal dynamics and ab-
sorbing phase transitions. Our analysis of the spread of ac-
tivity leads to refined values for the exponentsd ,h ,ni ,b8,
andzsp, and for the critical threshold of the BS model. Finite-
size scaling analysis of stationary properties at the critical
point yields estimates of the exponent ratiosb /n' and
ni /n'.

Studies of modified BS models have shown that scaling
properties are insensitive to changes that preserve its basic
symmetriessthat is, invariance under translation and reflec-
tiond f15–17g, pointing to the existence of a BS universality
class. Nonextremal models that exhibit a phase transition to
an absorbing state, and that possess these same symmetries,
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and no additional ones, belong generically to the directed
percolationsDPd universality classf18,19g. Here we show
that such models fall in a “extremal-DP” universality class
when modified to follow extremal dynamics. Thus extremal
dynamics is a relevant perturbation for absorbing-state tran-
sitions, just as was shown by Sneppen in the context of in-
terface depinningf2g.

The balance of this paper is organized as follows. Section
II presents a general scheme linking ordinary absorbing-state
phase transitions and extremal dynamics via an intermediary
“extremal-absorbing” model. In Sec. III we describe our
simulation results. Our findings regarding scaling and univer-
sality are discussed in Sec. IV. Mean-field analyses are pre-
sented in Appendix A, and an improved simulation algorithm
in Appendix B.

II. ABSORBING STATE MODELS AND EXTREMAL
DYNAMICS

In this section we examine how a stochastic model with
an absorbing-state phase transition may be transformed to
exhibit SOC under extremal dynamics. We begin, for gener-
ality, by defining a rather abstract scheme, and then discuss
specific examples. A large class of models exhibiting an
absorbing-state phase transition may be formulated as fol-
lows f20–23g. Consider a stochastic processS defined on a
connected graphG of N sites. sG consists of a set of sites
with links between certain pairs of sites. Typical examples
are a ring ofN sites, and thed-dimensional hypercubic lat-
tice Zd, with links between nearest neighbors.d Thestatessid
of site i is 0 or 1, the latter value denoting an active site, the
former an inactive one. For each sitei in G we define a
neighborhoodvsid,G, or, more generally, a set of neighbor-
hoodsv1sid ,v2sid ,… ,vnsid.

The dynamics ofS proceeds in steps. Each step involves
choosing an active sitei sthe central site for this stepd, at
random, and changing the states of the sites invsid according
to a certain rulef. In case there are two or more neighbor-
hoods, one of them,vrsid say, is chosen at random from the
collection, with probabilitypr, and a rulef r is applied to the
site or sites invr. In generalf sor f rd is a probabilistic rule. At
each step the number of active sites may change, and if at
any moment there are no active sitesfssid=0, ∀i PGg, the
process has fallen into an absorbing state and there is no
further evolution. Otherwise the dynamics proceeds to the
next step.

Using sn to denote the entire set of activity variables
ss1d ,ss2d ,… ,ssNd at stepn, the dynamics generates a se-
quences1,s2,… starting from the initial configurations0. It
is frequently of interest to associate a continuous time vari-
ablet with the process. This is usually done by associating a
time incrementDt=1/Na with each step, whereNa is the
number of active sites just before the step is realized. We
define theorder parameteras rstd=Probfstsid=1g, i.e., the
fraction of active sites at timet. sThe event space here is the
set of all realizations of the process up to timet, starting
from a given initial probability distribution on configuration
space.d If the stationary order parameter, defined by
limt→`limN→`r, vanishes, the process is said to be in the

absorbing phase; otherwise it is in theactivephase.
A simple model exhibiting a phase transition to an absorb-

ing state is thecontact processf14g. Here we consider the
one-dimensional version. There are three setsvrsid, conve-
niently denoted asv0sid= i and v±sid= i ±1, with associated
probabilitites p0 and p±=s1−p0d /2. In terms of the usual
parametrizationf14,23g, p0=1/s1+ld, where lù0 repre-
sents the rate of spread of activity.sIn the “epidemic” inter-
pretation of the CP, active sites represent infected organisms,
inactive sites susceptibles, andl is the infection rate.d The
updating rules aref0=0, f±=1. In other words, an active site
has a probability per unit time of 1/s1+ld to become inac-
tive, while an inactive site j becomes active at rate
lnas jd / f2s1+ldg, wherenas jd is the number of active neigh-
bors of sitej . The one-dimensional CP exhibits a continuous
phase transition between an absorbing phase and an active
one atlc.3.297 85f20,22,23g.

It is convenient to associate the control parameter with the
updating rule f rather than with the probabilitiespr. We
therefore reformulate the CP as follows. With the setsv0sid
andv±sid defined above, we takep0=1/2 andp±=1/4, and
defineq=l / s1+ld. The updating functions are

f0 = H1, w.p. q,

0, w.p. 1 − q
J s1d

s‘w.p.’ denotes “with probability”d, and

f± = 5
1, if ssi ± 1d = 1

1,w.p.q if ssi ± 1d = 0.

0,w.p. 1 −q
6 s2d

It is easy to verify that the transition rates satisfyws0
→1d /ws1→0d=nal /2, just as in the original formulation.
The critical valueqc.0.767 33.

The following three-site contact processsCP3d will play
an important role in our analysisf24g. For each site we de-
fine the setvsid=hi −1,i , i +1j sthe central site and its nearest
neighborsd. The updating functionf takes values of 1 and 0
with probabilitiesq and 1−q respectively, independently at
each of the three sites invsid. sIn Ref. f24g this is called
model 3.d Simulations of the CP3 show that it exhibits a
continuous phase transition atq=qc.0.635 23s3d.

We shall assume that the processS is defined so that the
control parametersssuch asqd are associated with the updat-
ing rule f. Each time a site is updated, the value off may be
determined by comparing a random numberx with the pa-
rameter in question.sThis is of course the usual procedure in
simulations.d In the CP3, for example, we takef =1 if x,q,
and zero otherwise, wherex is uniformly distributed on the
interval f0,1g. Call the random number associated with the
most recent updating of sitei ,xi, so thatssid=Qsq−xid with
Q the unit step function.(The initial values of thexi are
assigned according to the state variablesssid. For example, if
all sites are initially active, we draw the initialxi from the
distribution uniform onf0,qg.) For the CP, Eq.s1d requires
that we update the central sitei with a number chosen uni-
formly from f0,1g. According to Eq.s2d, the same applies
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when updating aninactiveneighborsi ±1d, but when updat-
ing anactiveneighbor, the random numberx is drawn from
the intervalf0,qg, since an active neighbor remains active.

Summarizing, we have shown how a stochastic processS
may be formulated using a set of random variablesxi, such
that sitei is active ifxi is smaller than a certain parameterq.
S suffers an absorbing-state phase transition atq=qc. We
now define two related processes,SEA and SE. The former,
extremal absorbingprocess, is obtained by taking the central
site as the active site having the smallest xi, rather than
choosing it at random from among the currently active sites.
As in the original processS, if there are no active sitessi.e.,
xj .q, ∀ j PGd, the process has reached an absorbing con-
figuration and the evolution ceases. ThusSEA possesses an
absorbing state, and since the original processS exhibits a
phase transition between an active and an absorbing phase as
the control parameterq is varied, we expectSEA to as well, at
some valueqc,E. sThe reason is that the relative likelihood of
generating and destroying active sites varies withq, just as in
S.d Mean-field theoryssee Appendix Ad yields qc,E=qc. Due
to the different correlations generated under extremal dy-
namics, however, the critical valueqc,E of SEA is in general
different fromqc.

We define theextremalprocessSE by relaxing the condi-
tion in SEA, that the extremal sitei must be activesi.e., have
xi ,qd for the dynamics to proceed. IfS is the original con-
tact process, thenSE is a process in which either the minimal
site or one of its nearest neighbors is updated at each step. If
S is the CP3,SE is the familiar Bak-Sneppen model. Note
that SE has no absorbing state, hence no phase transition to
such a state. Its stationary properties are nevertheless inti-
mately connected with the critical-point properties ofSEA.

Of particular interest is the stationary probability density
p̄sxd of site variables under extremal dynamics. In the Bak-
Sneppen model, as is well known, the density is a step func-
tion, p̄sxd=CQsx−qc,EdQs1−xd, in the infinite-size limit.
fC=1/s1−qc,Ed is the normalization factor.g We expectp̄sxd
to exhibit a step-function singularity in any extremal model
SE f15g. This feature is in fact already present in the original
model S at its critical point, because at the critical pointq
=qc, the stationary density of active sitesshaving xj ,qd
tends to zero as the system sizeN goes to infinity. The dis-
tribution on the “allowed” regionx.q is uniform, since the
xj are drawn from a uniform distribution. Thusp̄sxd jumps
from zero to a finite value atx=qc. In the supercritical re-
gime sq.qcd, p̄sxd is equal to a constantp1 for x,q, so that
qp1=r sthe order parameterd, and takes a different constant
value, p2, on the intervalfq,1g. Once again, the stationary
density is discontinuous atx=q.

What holds forS also holds qualitatively forSEA. The
critical valueqc,E may, as noted, differ fromqc, but sinceSEA
exhibits an absorbing-state phase transition, its stationary
distribution p̄sxd also has a step-function singularity. Just at
q=qc,E, the order parameterr=0, but asN→` the survival
time of the process tends to infinity. This means that the
process can survive indefinitely, with the choice of the cen-
tral siterestricted to the set having xøqc,E. The presence of
active sites in the rangeqc,E,xøq is then irrelevant, since a
site with xøqc,E is always available. Thus forqùqc,E, the

distribution p̄sxd exhibits a step-function singularity atqc,E.
Extremal dynamics effectively “pins” the singularity atqc,E.
The foregoing remarks onSEA obtain in the infinite-size
limit; for finite N there is a nonzero probabilitysfor q,1d,
that all sites havex.q so that the system eventually be-
comes trapped in the absorbing state.sThe mean lifetime,
however, is expected to grow exponentially withN, for q
.qc,E.d

In summary, ifS exhibits an absorbing-state phase transi-
tion, thenSEA should as well, although not necessarily at the
same value ofq. The distributionp̄sxd possesses a step func-
tion singularity in both cases. Near the critical pointsq
*qcd of the original processS we expectr,sq−qcdb, with
b the critical exponent associated with the order parameter.
Below the upper critical dimensionsdc=4 for DP f18,19gd,
b,1. In the supercritical regime ofSEA, on the other hand,
r=e0

qp̄sxddx~ sq−qc,Ed sincep̄sxd jumps from zero to a finite
value at x=qc,E. Thus the order parameter exponentb is
unity in SEA.

In SE, the central site is always chosensin the N→`
limit d from the sethi :xi øqc,Ej, just as inSEA at its critical
point. Since the order parameter is zero in the latter case, we
may assert that extremal dynamics effectively tunes the order
parameter to zero.sr approaches zero from above asN→`.d
As we have seen, the existence of sites withqc,E,x,q be-
comes irrelevant inSEA, in the infinite-size limit. In other
words,SE is identical to the critical processSEA in this limit.
sStarting from the same initial configuration, and using the
same set of random numbers, the same sequence of sites will
be updated in the two processes.d

Since the extremal version of the CP3 is the familiar Bak-
Sneppen model, we shall refer to the CP3EA as theabsorbing
Bak-SneppensABSd model. Our objective is to characterize
the behavior of the ABS model and of the extremal and EA
versions of the contact process. The ABS model is closely
related to thef-avalancheprocess studied in Ref.f5g. An
f-avalanchesin the present notation,q-avalanched, begins
when the minimal site variablexmin,q, the minimum having
beengreater thanq at the preceding step or steps, and con-
tinues until the minimum is once again.q. sAs q ap-
proachesqc,E from below, the mean avalanche duration di-
verges.d The dynamics of the BS model continues, regardless
of whether a given avalanche has terminated or not. But in
the ABS modelxmin.q represents an absorbing state and the
dynamics ceases. In the BS model, it is common to analyze
the properties ofq-avalanches in the stationary state. It is
similarly of interest to study stationary properties of the ABS
model, attained once the system has relaxed, after an initial
transient period. We may also study the mean lifetime of the
active state as a function of system size. Another approach to
studying absorbing-state phase transitions consists in follow-
ing the spread of activity starting from a single active site.
This spreading phenomenon in the BS model was studied in
Refs.f4,5g, where it is called the BS branching process, and
in Ref. f7g under the name of the BSsp̃d model.

The assertions regarding extremal and extremal-absorbing
models are supported by mean-field theorysMFTd, as dis-
cussed in Appendix A. In particular, for the ABS modelp̄
= 3

2Qsx− 1
3

d, just as in the MFT of the original BS model. In
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the extremal and the extremal-absorbing contact process, the
stationary probability densities exhibitsfor q.qc,E=1/2d,
two discontinuities, one atx=k;q2/ s3q−1d, the other atx
=q.k. fThese coalesce atq=1/2.Note that the parameterq
continues to influence the form ofp̄ in the extremal contact
process, due to the nature of the updating rule, Eqs.s1d and
s2d.g These predictions are in qualitative agreement with
simulation.

In the following section we report our simulation results.
Although many models are considered, they may be orga-
nized as follows: absorbing, nonextremalsCP3d; extremal-
absorbingsABS and CPEAd; extremalsCPEd. In some cases
anisotropic versions are also considered.

III. SIMULATION RESULTS

A. Absorbing Bak-Sneppen model: Stationary properties

Taking advantage of the fact that the minimal site is al-
most alwaysøqc,E, we have devised a highly efficient simu-
lation algorithm, as described in Appendix B. Using this
method, we conducted extensive studies of the one-
dimensional ABS model. We initialize the system with all
sites active and allow it to relax until mean properties fluc-
tuate about stationary values. Stationary properties are ob-
tained from temporal averages over the set of surviving re-
alizations. Each step corresponds to a time interval ofDt
=1/Na, with Na the number of active sites just before the
updating is performed. Results for the stationary order pa-
rametersi.e., the density of sites withx,qd, confirm that in
the supercritical regimesq.qc,Ed, the order parameter grows
linearly with q−qc,E, as anticipated in Sec. II.

We study the finite-size scaling behavior of the stationary
order parameterr̄ and of the lifetimet at the critical point.
ft is obtained from an exponential fit to the survival prob-
ability Psstd.g The expected finite-size scaling behaviors at
the critical point arer̄,L−b/n' andt,Lni/n'. We performed
simulations atq=0.667 01 and 0.667 02, the latter being the
preferred literature value for the threshold in the one-
dimensional BS model, while the former is favored by the
results discussed in the following section. We studied sys-
tems of 1000, 2000, 4000,…, 32 000 sites in simulations of
23107 to 33108 time steps.

For L=4000–32 000, the results for the order parameter
follow a power law with b /n'=0.755s5d. The data for
smaller system sizes, however, show systematic deviations
from a pure power law, leading us to seek a correction to
scaling term; a correction decaying~L−1/2 leads to a good fit.
We fit the expression

ln r̄ = −
b

n'

ln L −
b

L1/2 s3d

to the data forLù1000, allowingb /n' andb as adjustable
parameters; the best-fit values areb /n'=0.769s7d and b
=3.69s20d. The simulation data, and the difference from best
fit of Eq. s3d are plotted in Fig. 1, showing the high quality of
fit. The data for the lifetime, using system sizes of 125, 250,
…,8000 yield ni /n'=2.12s1d, with no obvious correction
term ssee Fig. 2d. We also determined the stationary moment

ratio m=r2/ r̄2 at the critical point. The estimates form de-
crease slowly withL, and appear, when plotted versusL−0.25,
to approach a limitingsL→`d value of 1.030s5d ssee Fig. 3d.
sFor the one-dimensional CP,m=1.1737 at the critical point.d
Essentially the same results are obtained forq=0.667 01 and
0.667 02.

B. Absorbing Bak-Sneppen model: Spread of activity

Scaling properties at an absorbing state phase transition
are also reflected in the spread of activity from an initially
localized regionf28g. In spreading simulations of the ABS
model we start the system with a single sitex0,q and all
others above this value.sThis is completely equivalent to the
BS branching process studied in Refs.f4,5,7g.d At q=qc,E,
the process generates a scale-invariant pattern of activity that
may be characterized by power laws for the survival prob-
ability Psstd, the mean number of active sitesnstd and the
mean-square distanceR2std=fnstdg−1ko jr j

2stdl. fr jstd denotes
the position of thej th active site at timet. Note thatnstd is

FIG. 1. Stationary activity densitysfilled symbolsd r̄ versus sys-
tem sizeL in the one-dimensional ABS model at the critical point.
Open symbols, difference betweenr̄ and the fitting function, Eq.
s3d, shifted vertically for visibility.

FIG. 2. Mean lifetimet sfilled symbolsd versus system sizeL in
the one-dimensional ABS model at the critical point. Open symbols,
t /Lni/n' sshifted vertically for visibilityd.
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taken over all realizations, including those that have become
trapped in the absorbing state at or before timet.g The scal-
ing laws are typically written in the form

Ps , t−d, n , th, R2 , tzsp, s4d

relations that have been verified to high precision for various
examplesf21,23g. sWe usezsp to denote the spreading expo-
nent, to avoid confusion with thedynamicalexponentz.d The
appearance of power laws is commonly used to locate the
critical point f23g.

The spreading exponentd is related to the avalanche size
exponentt, definedsin the BS modeld via PDssd,s−t, where
PDssdds is the probability of an avalanche having a duration
betweens and s+ds. Thus the survival probabilityPsstd
=et

`PDssdds, implying t=1+d.
We performed spreading simulations of the ABS model at

q=0.666 99, 0.667 00, 0.667 01, 0.667 02, and 0.667 03.
Each realization was followed up to a maximum time of
about 2.73105; the total number of realizations ranged from
43105 to 1.63106, depending on the value ofq. To locate
the critical point we plot the local slopedstd=d ln P/d ln t,
versus t−1. For q,qc the local slope is expected to veer
downward at large times, and vice versa.fNumerically,dstd
is given by the slope of a least-squares linear fit to the data in
an intervalft0,20t0g, with geometric meant.g On the basis of
the local slope datassee Fig. 4d we conclude thatqc,E
=0.667 01s1d. This is consistent with previous estimates,
which place the threshold at 0.667 02s8d f7g and 0.667 02s3d
f5g. fWe did not find analyses of the local slopeshstd or
zspstd, defined analogously todstd, useful in locating the criti-
cal point.g

Analyzing the data at the critical point, we are unable to
obtain good fits toPs,n, and R2 using simple power-law
expressions. Including a subdominant power-law correction
in the relations of Eq.s4d greatly improves the quality of fit.
In particular, the survival probability can be fit quite accu-
rately using

ln Ps . − d ln t + fPt−1/4 + C, s5d

where C is a constant and the best-fit values ared
=0.084s1d and fP=0.115. The same value ford is found
using the data forq=0.667 02.fThe choice of a correction
term decaying ast−1/4 is motivated by the fact that the local
slopesdstd andzspstd are essentially linear when plotted ver-
sust−1/4, as seen in the inset of Fig. 4.g In Fig. 5 we plotPs
and the ratio ofPs to the fitting function, Eq.s5d; the ratio is
seen to be essentially constant fort.50. The mean-square
displacement may also be fit using an asymptotic power law
and correction term. We find

ln R2 . zspln t − fRt−1/4 + C8, s6d

with zsp=0.921s10d andfR=1.703.
It has been argued thath=0 quite generally for extremal

dynamics f5,25g. Our data for the one-dimensional ABS
model support this conclusion, on a double-logarithmic plot,
nstd clearly grows more slowly than a power law. Whileh

FIG. 3. Moment ratiom for the ABS model versus system size
L−0.25. Points, simulation data; line, best linear fit,m=1.0295
+0.268L−0.25.

FIG. 4. Local slopedstd versus 1/t in the ABS model.q values
sbottom to topd 0.667 00, 0.667 01, 0.667 02, and 0.667 03. Inset,
data forq=0.667 01 plotted versus 1/t0.25.

FIG. 5. Survival probabilityPsstd in the ABS model at the criti-
cal point,q=0.667 01. The nearly constant function represents the
ratio of Ps to the fitting function, Eq.s5d.
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=0 is compatible withnstd growing without limit ast→`
ffor example,~sln tdf, as suggested in Ref.f7gg, our results
support the conclusion thatnstd saturates at afinite value ǹ
at long times. Specifically, we are unable to fit the long-time
behavior using an expression of the formn,sln tdf. On the
other hand, we findd ln n/d ln t~ t−v, with v.0.149, sug-
gesting thatnstd.n`exps−ct−vd. In fact an excellent fit is
obtained usingc=1.92 andn`=14.574, as can be seen in Fig.
6. fSaturation ofnstd does not occur on the time scale of the
simulation; for the anistropic case, shown in the inset of Fig.
6, saturation is in fact evident.g

In the absorbing phasesq,qc,Ed, the survival probability
must vanish ast→`. Our data followPs, t−de−t/t, wheret
,uq−qc,Eu−ni, with ni=2.54s2d. On the other hand, forq
.qc,E, the survival probability tends to a finite value ast
→`. We obtain limt→`Ps; P`,sq−qc,Edb8, with b8
=0.20s1d. sIn DP and allied modelsb8=b f28g, but this need
not hold for models in other universality classes.d Our results
for the critical exponents of the ABS model are summarized
and compared with those for the contact process in Table I.

In the CP and other nonextremal models, the spread of

activity in thesupercriticalregime follows a simple pattern:
the sizeR of the active region grows linearly with time, and
the number of active sitesn grows ~td. Our observation of
subdiffusive spreading at the critical point motivates us to
investigate spreading in the supercritical ABS model. We
find that spreading is indeedsublinear. For example, using
q=0.75 in a study extending tot.23106 to avoid transient
effects, we obtainR2, tx with x=1.32s1d andn, tl with l
=0.66s1d. sThe exponent governingR2 should be twice that
for n, since active regions have a finite activity density in the
supercritical regime.d Similar exponents are found forq
=0.70 and 0.78. Once again, extremal dynamics slows the
growth of activity.

C. CP3 model

We performed spreading simulations of the CP3 model,
using the approach described in the preceding section. Each
realization is followed up to a maximum time of 63104.
Using power-law behavior ofPsstd andnstd as the criterion
for criticality, we find qc=0.635 25s3d for the CP3.sNote
that this is some 5% smaller than the critical value of the
corresponding extremal model.d Analyzing the local slopes,
we obtain d=0.162s2d, h=0.312s2d, and zsp=1.265s4d.
These values are fully consistent with those for directed per-
colation ssee Table IId, confirming that the CP3 model be-
longs to the same universality class as the original contact
process.

A striking difference between extremal and nonextremal
models with an absorbing state is that the spread of activity
in the critical process is much slower in the former. This is of
course reflected in the valueh=0 for extremal models
swhile, for example,h=0.314 for DP in one dimensiond, and
in the subdiffusive growth inR2 in the ABS model. In Figs.
7 and 8 we compare typical evolutions in the ABS model and
its nonextremal analog, the CP3, at their respective critical
points. It is evident that the activity spreads much more
slowly in the ABS than in the CP3. A further notable differ-
ence is that in the ABS a site can remain active for a very
long time, i.e., while it is not the minimum site or a neighbor
of it. Thus the rates of both addition and loss of active sites
are much smaller in the critical extremal process than in the
corresponding nonextremal one.

D. Extremal CP

In light of the discussion of Sec. II, it is of interest to
study the behavior of other absorbing-state models under ex-
tremal dynamics. As a first step we report simulation results

FIG. 6. Mean number of active sitesnstd in the ABS model at
the critical point,q=0.667 01. The solid curve represents the fitting
function described in the text. Inset, a similar plot, for the critical
anisotropicABS model.

TABLE I. Critical exponents for the one-dimensional absorbing
Bak-Sneppen modelsABSd and contact processsCPd. CP exponents
from Refs.f23,40g.

Exponent ABS CP

b 1 0.27649s4d
b8 0.20s1d s=bd
ni 2.54s2d 1.73383s3d

b /n' 0.77s1d 0.25208s5d
ni /n' 2.12s1d 1.58071s11d

d 0.084s1d 0.15947s3d
h 0 0.31368s4d
zsp 0.921s10d 1.26523s3d

TABLE II. Spreading exponents for the CP3 and CPEA models
and the anisotropic absorbing Bak-SneppensAABSd model in one
dimension.

Exponent CP3 CPEA AABS

d 0.162s2d 0.0855s20d 0.234s5d
h 0.312s2d 0 0

zsp 1.265s4d 0.932s20d 1.425s10d
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for the extremal-absorbing contact processsCPEAd. We per-
formed spreading simulations to determineqc,E and the ex-
ponentsd ,h, andzsp, using simulations running to a maxi-
mum time of 63104 in 53105 independent realizations. We
find qc,E=0.794 15s5d for the extremal CP, compared with
0.767 33 for the originalsnonextremald process.sNote that,
as in the comparison between the CP3 and ABS models,
qc,E.qc.d

As in the case of the ABS model, the decay of the survival
probability at the critical point follows an expression of the
form of Eq. s5d, here with best-fit parametersd=0.0855 and
fP=0.226. The exponentd is essentially the same as found
for the ABS model, while the correction term is about twice
as large. At the critical point the derivatived ln n/d ln t
, t−0.1, again indicating a behavior of the formnstd
.n`exps−ct−vd, here withv=0.1. The mean-square distance

of active sites from the origin grows in a manner similar to
that in the ABS model. We are again able to fit the data for
R2 using an expression of the form of Eq.s6d, with zsp
=0.932 andfR2=2.026. These results strongly suggest that
the CPEA belongs to the same universality class as the ABS
model.

We turn now to the rather surprising behavior of the sta-
tionary probability densityp̄sxd in the extremal CP. Recall
that mean-field theorysAppendix Ad predicts p̄sxd=2Qsx
−1/2d for q,qc,E=1/2, while for q.1/2 there are two
steps, one atx=k;q2/ s3q−1d, the other atx=q. In simula-
tions of the CPE on a ring we find a single step discontinuity
for q,qc,E=0.794 15, and, forq.qc,E, a pair of steps, one at
x=q, the other atx=qs,q. The positions of the singularities
as obtained in simulationsusing data for system sizesL
=100, 200, …, 1600 to extrapolate the position in the

FIG. 7. Spread of activity in a typical realiza-
tion of the critical CP3 modelsq=0.635 25d.

FIG. 8. Spread of activity in a typical realiza-
tion of the critical ABS modelsq=0.667 01d.
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infinite-size limitd, are shown in Fig. 9. The lower singularity
qs is seen to bifurcate from the line of singularities just at the
critical point, in qualitative agreement with MFT. Note how-
ever that the position of the singularity is not constant for
q,qc,E, as predicted by MFT.

The density p̄sxd is shown for q=0.794.qc,E and q
=0.85 in Fig. 10. In the latter case it is evident that the step
at x=q is sharpsthis is true even for small systemsd. Note
that its position is predicted exactly by mean-field theory. All
of these observations highlight the fact that the step atx=q is
not related to a phase transition, but derives instead from the
singular nature of the updating rule, Eq.s2d. This rule treats
active and inactive neighbors of the central site differently. In
particular, a variablex sassociated with a neighbor of the
central sited, lying in the intervalfq,1g is updated tof0,1g,
effectively depleting the former interval, so thatpsxd falls
suddenly atx=q.

The step atx=qs, by contrast, is subject to finite-size
rounding, and becomes sharper with increasing system size,
as is characteristic of a critical singularity. The finite width of
the peak atx=qc sin the process withq=qc,Ed, appears to be
a finite size effect as well, it becomes sharper with increasing
L, suggesting that the singularities merge in the limitL→`.

E. Anisotropic ABS model

The scaling behavior of the Bak-Sneppen model changes
when the updating rule is asymmetricf29g. The same critical
exponents are found for a highly anisotropic version in
which at each step, only the minimal site and its neighbor on
the right are updatedf30g, and for weak anisotropyf16,31g,
so that one may identify an anisotropic BS universality class.
In this section we report results of spreading simulations of
the anisotropic absorbing BS model. To obtain these results,
we simulated the anisotropic ABSsin the highly anisotropic
versiond in studies extending to a maximum time of 1.6
3105, using 33105 realizations.

Analyzing the local slopedstd=d ln P/d ln t, we deter-
mined the threshold of this model to beqc,E=0.723 70s2d.
fThis is a substantial improvement over the earlier estimate
of 0.7240s1d f32g.g A typical evolution of the critical spread-
ing process is shown in Fig. 11. The local slopedstd yields
the estimated=0.234s5d. For anisotropic models we define

R2std as the mean-squareradius of gyration, i.e., the distance
is measured relative to the current center of mass of the set of
active sites, rather than to a fixed origin. This is done to
eliminate a spurious contribution due simply to the overall
drift in the active region. For the anisotropic ABS model
R2std may again be fit with an expression of the form of Eq.
s6d, with zsp=1.425s10d andfR=2.3s2d. The exponentsd and
zsp are quite different from those of the isotropic model. De-
spite these differences, we again findh=0 for the anisotropic
model. As before, the mean number of active sitesnstd satu-
rates at long times, more rapidly in fact than in the isotropic
ABS modelssee Fig. 6, insetd. We are able to fit the data well
using nstd=n`s1−e−ct1/4

d with parametersn`=5.206s3d and
c=0.348.

The nonextremal model corresponding to the anisotropic
ABS model is a two-site contact process, CP2, which is sim-
ply the CP3 with updating restricted to the central site and its
neighbor on the right. We have verified that the spreading
exponents of the CP2 model are those of directed percola-
tion. sHere again, we defineR2 as the mean-square radius of
gyration.d This leads to the interesting conclusion that a per-
turbationsasymmetric updatingd that is irrelevant for a non-
extremal model is relevant for the corresponding extremal
system.sWe note that, because the two sites in the CP2 are
updated in the same manner, the model does not fall in the
so-called anisotropic-DP class, for which bonds along differ-
ent axes are present with different probabilitiesf33g.d

IV. CONCLUSIONS

We investigate the relation between extremal dynamics,
exemplified by the Bak-Sneppen model, and nonextremal
models exhibiting a phase transition to an absorbing state,
using general arguments, mean-field theory and simulation.
The relation between the BS model and directed percolation
was already suggested some time agof4,5g. Here we clarify
this connection by showing how a generic absorbing-state
model can be transformed to an extremal one via the associ-
ated extremal-absorbing model. The nonextremal precursor
of the BS model is a three-site contact processf24g, CP3,
which, like the original CP, belongs to the directed percola-
tion universality class. The BS model and the extremal ver-

FIG. 10. Stationary probability densityp̄sxd in the CPE for q
=0.794sleftd andq=0.85 srightd; system sizeL=1600.

FIG. 9. Positionqs of the singularity in the stationary probability
density of the extremal CP. The upper line of singularities,x=q,
bifurcates fromqs at the critical valueqc,E.
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sion of the CP belong to a common universality class that
may be dubbed extremal DPsEDPd. A number of extremal
dynamics classes distinct from EDP are discussed in Ref.f5g;
another example is the anisotropic BS model. We expect that
further extremal dynamics universality classes exist, for ex-
ample, an extremal parity-conserving classf34g, although ex-
amples of the latter have yet to be studied.

Our results for the critical exponents of the EDP class,
which includes the BS model and the extremal CP, are com-
pared against those of ordinary DPsin one spatial dimensiond
in Table I. sHere we have taken the valuesh=0 andb=1 to
be exact for EDP.d The differences between the two sets of
exponent values are evident. Our resultst=1+d=1.084s1d,
andz=ni /n'=2.12s1d are in agreement with the earlier esti-
matesf5g of 1.07s1d and 2.10s5d, respectively. Our result is
however somewhat higher than Grassberger’s resultt
=1.073s3d f7g.

Certain scaling relations are expected to hold among the
critical exponentsf21,23,28g. In spreading processes one ex-
pectszsp=2n' /ni; our data are nearly consistent with this,
yielding 2n' /ni−zsp=0.022s14d. The relationb8=dni is also
satisfied, our data yieldb8−dni=−0.013s14d. Finally, we
consider the generalized hyperscaling relationf35g

2S1 +
b

b8
Dd + 2h = dzsp, s7d

in d dimensions. Using our data, we find the difference be-
tween the two sides of this relation to be 0.09s6d. Our results
are marred by another inconsistency that may reflect correc-
tions to scaling or finite size effects, the product
sb /n'd−1sni /n'dni

−1, with the first two factors determined
from finite-size scaling at the critical point, and the final
factor obtained from the decay of the survival probability in
the subcritical regime, should equalb=1; our data yield
1.08s3d. These minor inconsistencies suggest that one or
more of the exponents may be in error by 5% or so. Refining

their values will require accumulating larger data sets in
simulations of larger systems, a task we leave for future
work. sThe studies reported here were quite demanding com-
putationally, representing approximately 6 months cpu time
on an alpha workstation.d

In the course of our study we revisit a three-site contact
processsCP3d that is the nonextremal analog of the BS
modelf24g. We verify that the CP3 belongs to the universal-
ity class of directed percolation, as expectedf7g. We define
extremal and extremal-absorbing versions of the original
contact processsCPE and CPEA, respectivelyd and verify that
their scaling properties are the same as those of the BS
model. Our results confirm the relation between DP univer-
sality sin a nonextremal modeld and BS universalitysin the
corresponding extremal modeld identified some time ago by
Sornette and Dornicf8g. While these authors find DP-like
critical behavior in a model with parallel updating, the same
behavior is also found in sequentially updated models such
as the CP and CP3. The essential point is that all active sites
are treated equally, unlike in extremal models, in which the
currently “most active” site is updated at each step. The sta-
tionary probability density for the CPE follows, in general
terms, the predictions of mean-field theory, but certain inter-
esting differences exist, as detailed in Sec. III E.

It is clear that when an absorbing-state model is modified
to follow extremal dynamics, its critical exponents are al-
tered. Extremal dynamics tends to slow the spread of activity
in the critical and supercritical regimes. One may neverthe-
less inquire whether any more general features of the original
model are preserved under extremalization. A candidate for
such a conserved property is the critical dimensiondc. In
critical phenomena, various universality classessdiffering in
the symmetry group of the order parameter, or the presence
of conserved quantitiesd may share the samedc if the alge-
braic structure of their continuum descriptionsin particular,
the power of the lowest-order nonlinear term in the order
parameter, in a Landau-Ginzburg-Wilson effective Hamil-

FIG. 11. Spread of activity in a typical real-
ization of the critical anisotropic ABS modelsq
=0.723 70d.
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toniand is the same. Thusdc=4 for all models in then-vector
family. Extending this idea to extremal models is question-
able, since there is no continuum description at hand.sAt
first glance, the notion of extremal dynamics in a description
using acontinuousdensity seems problematic, since there is
always one and only one extremal site.d Be that as it may, it
seems plausible that if the field theory for DPf18,19,36g
were somehow modified to reflect extremal dynamics, the
dominant nonlinearity would not change, so thatdc would
retain its value of 4, as in DP. The upper critical dimension
dc=4 for the BS model was established some time ago by
Boettcher and Paczuskif37g. Our argument suggests that ex-
tremal versions of other absorbing-state models have the
same upper critical dimension as the corresponding nonex-
tremal model. We hope to test this prediction in future work.

Studying the anisotropic ABS model and its nonextremal
counterpart, the CP2 model, we find that anisotropy is a rel-
evant perturbation for extremal DP, while it is irrelevant for
the corresponding nonextremal class. In this context we note
the finding, by Dhar and Ramaswamy, that aniotropy is a
relevant perturbation for the BTW sandpilef41g. The irrel-
evance of anisotropic updating in the CP may be understood
by viewing it as a uniform drift, which can be eliminatedsin
the corresponding continuum descriptiond by a Galilean
transformationf42g. We suspect that other perturbations,
such as diffusion, may exhibit a similar pattern of relevance.
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APPENDIX A: MEAN-FIELD THEORY

1. Extremal dynamics as a zero-temperature limit

There are several ways of formulating a mean-field theory
sMFTd for extremal models. First we consider an approach
f11,31g in which the probability of a sitei being chosen as
the central site is proportional toe−bxi; extremal dynamics is
recovered in the limitb→`. sIn the present discussion the
parameterb bears no relation to the critical exponent de-
noted by the same symbol in the main text.d Applied to the
BS model, this approach yields the distributionp̄sxd
=s3/2dQsx−1/3dQs1−xd whenb→` f11,31g.

In the ABS model the distributionpsxd evolves via

]psx,td
]t

= − e−bxpsxdQsq − xd + 3E
0

q

e−bypsy,tddy

− 2psx,tdE
0

q

e−bypsy,tddy. sA1d

The first term represents a site with valuex being selected as
the central site, which is only possible ifx,q. The second
term reflects updating three sites with variables uniform on
f0,1g, with the integral representing the overall rate of events.

The final term represents updating of the two neighboring
sites, and is obtained using the mean-field factorization of
the nearest-neighbor joint probability density,psx,y,td
.psx,tdpsy,td. In writing Eq. sA1d we have associated a
time incrementdt=1/N, with N the number of sites, with
each event.

Equation sA1d admits an infinite set of stationary solu-
tions for whichp̄sxd=0 on the interval 0øxøq. These rep-
resent absorbing states. To seek an active stationary solution
we let I =e0

qe−bypsy,tddy, and equate the time derivative to
zero, yielding

p̄sxd =
3I

2I + Qsq − xde−bx . sA2d

To determineI we multiply Eq. sA2d by e−bx and integrate
from x=0 to x=q, leading toI =se−b/3−e−bqd / f2s1−e−b/3dg,
so that

p̄sxd =
3
2se−b/3 − e−bqd

se−b/3 − e−bqd + Qsq − xde−bxs1 − e−b/3d
. sA3d

In the limit b→`, we find, forq.1/3, the singular density
p̄sxd=s3/2dQsx−1/3d. This is precisely the MF result for the
original BS model.fWhen we takeb→`, the above expres-
sion reduces top̄sxd=s3/2dQsx−qd for q,1/3. But this den-
sity is not normalized onf0, 1g and so must be rejected. We
are left with only absorbing stationary solutions forq,1/3.g
Thus qc,E=1/3 in the MFT of theabsorbing Bak-Sneppen
model. Note that the parameterq is irrelevant forq.qc,E
=1/3, as was argued in Sec. II.

A moment’s reflection shows that the evolution ofpsxd in
the snonextremald CP3 model is given by Eq.sA1d with b
=0, since all active sites are then equally likely to be chosen
as the central site. Taking the limitb→0 of the stationary
solution, Eq.sA3d, one finds, forqù1/3, the stationary den-
sity

p̄sxd =H 1
2s3 − q−1d, x , q,
3
2 , q , x ø 1.

J sA4d

EquationsA4d confirms that the stationary density of asnon-
extremald model exhibiting an absorbing state phase transi-
tion is characterized by a steplike singularity, as asserted in
Sec. II. Forq,1/3, Eq.sA4d yields an unphysical, negative
density, showing thatqc=1/3 for theCP3, in the mean-field
approximation.

The foregoing analysis is readily extended to the
extremal-absorbing contact processsCPEAd defined in Sec. II.
The rate of events is again given byI =e0

qe−bxpsxddx. At each
event, there is a probability of 1/2 that the central site
swhich must havex,qd is replaced, while with probability
1/2 a neighbor is updated. Thus the loss terms in the equa-
tion for psx,td are −s1/2dfe−bxQsq−xd+ Igpsxd. The gain
term corresponding to updating of the central site is simply
I /2, but for updating a neighbor it issI /2df1−Psqd
+s1/qdQsq−xdPsqdg, wherePsxd=e0

xpsyddy is the probabil-
ity that a given sitei has xi ,x. sThe reason is that when
updating anactiveneighbor, the variable is chosen from the
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distribution uniform onf0,qg.d Thus the MF equation of mo-
tion is

]p

]t
= −

1

2
e−bxpsxdQsq − xd +

I

2
S2 − Psqd +

Qsq − xd
q

3Psqd − psxdD . sA5d

To find the stationary solutionp̄sxd we first note that for 0
øx,q, setting]p/]t to zero yields

p̄sxd = AI/sI + e−bxd, sA6d

whereA=2+sq−1−1dPsqd. Integrating Eq.sA6d from x=0 to
x=q, we find

Psqd = Aq−
A

b
E

e−bq

1 du

I + u
. sA7d

If we now multiply Eq.sA6d by e−bx and integrate over the
same interval, we obtain

A

b
E

e−bq

1 du

I + u
= 1 sA8d

leading toPsqd=2−q−1 in the stationary state. We see that
qc,E=1/2 as in the MFT of theoriginal contact process.
Evaluating the integral in Eq.sA8d one finds I =se−bk

−e−bqd / s1−e−bkd, wherek=q2/ s3q−1d. The stationary den-
sity is

p̄sxd =
1

q

se−bk − e−bqdf1 + s2 − q−1dQsq − xdg
se−bk − e−bqd + e−bxs1 − e−bkdQsq − xd

. sA9d

For q.1/2, we havek,q, and in the limitb→`,

p̄sxd =5
0, x , k,

1

k
, k , x , q,

1

q
, x . q, 6 sA10d

which is normalized and exhibits step-function singularities
at x=k and x=q. For q,1/2 on the other hand,k.q and
Eq. sA9d does not yield an acceptable probability density,
and we conclude that the only stationary state is the absorb-
ing one. The critical point of the CPEA thus falls atqc,E
=1/2 in the MFapproximation.

Taking b→0 in Eq. sA9d, we obtain the probability den-
sity for the original CP,

p̄sxd =5
2q − 1

q2 , x , q,

1

q
, x . q.6 sA11d

Finally, for the extremal CP, the equation of motion is

]p

]t
= −

1

2
e−bxpsxd +

I

2
S2 − Psqd +

Qsq − xd
q

Psqd − psxdD
sA12d

with I =e0
1e−bxpsxddx. To find the stationary solution we write

p̄sxd =
2 + fq−1Qsq − xd − 1gPsqd

1 + I−1e−bx . sA13d

Integrating from 0 toq and solving forPsqd we find

Psqd =
2sq − gd

q + gsq−1 − 1d
, sA14d

where

g =
1

b
ln

I + 1

I + e−bq . sA15d

Now multiply Eq.sA13d by e−bx and integrate from 0 to 1 to
obtain

1 = AE
0

q e−bxdx

I + e−bx + A8E
q

1 e−bxdx

I + e−bx , sA16d

where A=2/fq+gsq−1−1dg and A8=gA/q. If Psqd.0, the
first term on the right-hand side of Eq.sA16d is nonzero and
dominates asb→`. Equating the first term to unity then
leads tog=q2/ s3q−1d=k, and then toPsqd=2−q−1 which is
positive for q.1/2. A simple calculation then yields the
distribution of Eq.sA10d in the limit b→`.

If q,1/2 the above solution is not valid since it implies
Psqd,0. We therefore takePsqd=0, implying g=q, and so
A=A8=2. EquationsA16d now reads

1 = 2q +
2

b
ln

I + e−bq

I + e−b . sA17d

Solving for I and inserting the result in Eq.sA13d, we find in
this case limb→`p̄sxd=2Qsx−1/2d. These results have been
verified via numerical integration.

2. Extremal dynamics on a complete graph

Another approach to formulating MFT for the BS model
considers extremal dynamics on anN-site complete graph or
random-neighbor modelstwo neighbors are selected at ran-
dom each time a site is updatedd; the stationary densityp̄sxd
becomes a step function in the infinite-size limit
ff12,16,38–40gg. We now extend this approach to the ABS
model. LetPsxd=Probfxi ,xg=e0

xpsyddy be the distribution
function and letQsxd=1−Psxd. By definition Q is a nonin-
creasing function withQs0d=1 andQs1d=0, sincepsxd=0
outside the intervalf0,1g.

Activity in the ABS model is predicated on the minimal
site xmin being smaller thanq; the probability of this event,
under the MF factorization, is 1−fQsqdgN. Given xmin,q,
updating the extremal site and two neighbors results, on the
average, in the increment,dPsxd=s1/Ndh−f1−Qsx,dNg
−2Psxd+3xj, wherex,;minhx,qj, so that the first term rep-
resents loss of the minimal site, the second removal of two
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neighbors, and the third random replacement of the three site
variables with numbers uniform onf0,1g. If we adopt a time
incrementdt=1/N for each such event, the equation of mo-
tion for P is

]Psx,td
]t

= − f1 − Qsx,,tdNg + f1 − Qsq,tdNgf3x − 2Psx,tdg.

sA18d

Note that the evolution ceases ifQsq,td=1, i.e., if there are
no active sites.fSinceQ is nonincreasingQsqd=1⇒Qsx,d
=1.g

For q.1/3, the stationary solution to Eq.sA18d corre-
sponds to a densityp̄sxd that approaches a step function,
s3/2dQsx−1/3d, as N→`. A simple calculation yields the
dominant contribution for largeN,

Q̄ .5s1 − 3xd1/N, x ,
1

3
,

3

2
s1 − xd + Ose−const Nd x .

1

3
.6 sA19d

sOne should note however that the convergence is nonuni-
form in x, being slower the closerx is to the critical value of
1/3.d For q,1/3 we are unable to find an acceptable sta-
tionary solution withQ,1 si.e., p̄.0d, for x,q, and con-
clude that only absorbing solutions exist.

The analysis of the ABS model on a complete graph con-
firms that in the infinite-size limit, the model enjoys the usual
properties of the BS model forq.qc,E=1/3, andfalls into
the absorbing state forq,1/3.

The evolution ofPsx,td in the extremal CP follows, in MF
approximation, the equation

]Psx,td
]t

= −
1

2
f1 − Qsx,tdNg +

x

2
−

1

2
Psx,td +

1

2
fx*Psq,td

+ xQsp,tdg, sA20d

wherex* =minhx/q,1j. Numerical integration shows that the
solution converges, for largeN, to a stationary distribution
consistent with the singular density found above in the limit
b→`.

APPENDIX B: SIMULATION METHOD FOR EXTREMAL
DYNAMICS

We have devised an improved simulation algorithm for
extremal dynamics models. Since the site with the smallest

variable, xmin, must be identified at each step, it becomes
important to devise an effective search strategy. An efficient
general-purpose search algorithm uses a binary tree structure
to identify xmin. One approachf7g utilizes a lattice of 2n sites.
At the first level of selection, each site is compared with one
of its neighbors and the minimum of the pair selected. At the
next level the minimum between each neighboring pair is
selected, and so on, so that at thenth level the global mini-
mum is identified.

A second binary schemef26g is formulated as follows.
Site 0 is placed at the apex of the tree. Site 1 is placed on the
level below the apex, to the left of 0 ifx1,x0, to the right if
x1.x0. A site i is added to the tree in the following way: we
go down the tree comparingxi with the variablesx1,… ,xi−1,
turning left or right depending on whetherxi is smaller or
larger thanxj, until we find an empty site. Building the tree
in this way,xmin will occupy the leftmost position in the tree.
In these schemes, maintaining the tree structure, once con-
structed from the initial set of variablesxi, requires a small
number of operations at each step, and is many times more
efficient than a repeated global search for the minimim. We
find, nonetheless, that a suitablyrestricted search requires
less cpu time in the stationary state.

A special property of the BS modelsshared by its absorb-
ing version, and by other extremal modelsd, is that the mini-
mal site falls, with a probability approaching unity as the
system size grows, in the intervalf0,qc,Eg. At the same time
the density of sites with values in this interval approaches
zero asN→`. This suggests maintaining a list of sites hav-
ing x,qc,E f27g. Then the search forxmin may be restricted
to the list, except for the rare instances in which the latter is
empty.sFor the ABS we must in any case restrict the search
to sites withxøq.d If the system is large, so that the typical
number of sites withx,q is not small, it becomes advanta-
geous to introduce asecond list, of sites havingx,q**

,qc,E. When this relatively short list is nonemptysas is usu-
ally the cased the search forxmin is restricted to it. In studies
of the BS model, we obtained the greatest efficiency using
q** =0.54, while the criterion for the first list wasx,0.65,
that is, slightlybelow qc,E. sThe occasional need to perform a
global search, in the rare instances when both lists are empty,
is more than compensated by their reduced sizes when using
these values.d Compared with the binary tree method, our
approach results in threefold reduction in CPU time, in the
stationary state, for a system of 1000 sites.sThe binary tree
approach may prove more efficient for studying transients,
since initially the lists will not be short, if thexi values are
chosen uniformly onf0,1g.d
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