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Absorbing-state phase transitions with extremal dynamics
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Extremal dynamics represents a path to self-organized criticality in which the order parameter is tuned to a
value of zero. The order parameter is associated with a phase transition to an absorbing state. Given a process
that exhibits a phase transition to an absorbing state, we define an “extremal absorbing” process, providing the
link to the associated extrem@lonabsorbingprocess. Stationary properties of the latter correspond to those
at the absorbing-state phase transition in the former. Studying the absorbing version of an extremal dynamics
model allows to determine certain critical exponents that are not otherwise accessible. In the case of the
Bak-SneppeliBS) model, the absorbing version is closely related to thavalanche” introduced by Paczuski,
Maslov, and BaKPhys. Rev. E53, 414(1996)], or, in spreading simulations to the “BS branching process”
also studied by these authors. The corresponding nonextremal process belongs to the directed percolation
universality class. We revisit the absorbing BS model, obtaining refined estimates for the threshold and critical
exponents in one dimension. We also study an extremal version of the usual contact process, using mean-field
theory and simulation. The extremal condition slows the spread of activity and modifies the critical behavior
radically, defining an “extremal directed percolation” universality class of absorbing-state phase transitions.
Asymmetric updating is a relevant perturbation for this class, even though it is irrelevant for the corresponding
nonextremal class.
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[. INTRODUCTION transitions to an absorbing state, in particular the transforma-
) ] _tion of a (nonextremal, non-SOQAmodel having an absorb-
Extremal dynamics has been employed extensively inng state to one exhibiting SOC under extremal dynamics.

modelling far from equilibrium systems such as biologicalwe develop a general scheme relating the two classes of
evolution[1] and driven interfacef2,3]. Although processes models via an intermediate, “extremal-absorbing” process
with extremal dynamics do not have a phase transitibere  whose absorbing-state critical point corresponds exactly to
is no control parametgthey exhibit scaling properties remi- the critical behavior observed in the corresponding SOC
niscent of those observed at continuous phase transitiomaodel. Two exampleghe BS model and an extremal contact
[4,5]. Indeed, it was suggested some time ago that the agprocesy are studied in detail, yielding refined estimates for
pearance of “self-organized” scaling properties in extremacritical properties, and evidence of a universality class asso-
dynamics and in sandpile models corresponds to forcing theiated with absorbing phase transitions under extremal dy-
order parametefassociated with an underlying phase transi-namics. o
tion) to zero from above6]. The connection between ex- _ The prime example of extremal dynamics is the BS model
tremal dynamics and directed percolatiébP), the prime [1,12, proposed to explain mass extinctions observed in the
example of an absorbing-state phase transition, was first su{)o-ss'l, record. While its application in the evolutionary con-
gested by Paczuski, Maslov, and Bial and investigated in ext is debated13], it remains an intriguing and incom-

detail by these authors in the context of the Bak-SneppeR!€tély understood example of scaling behavior far from
(BS) mgdel and related processs). (The latter work, azp equilibrium. The contact proce$€P) [14] is the most famil-

o iar example of a Markov process exhibiting a phase transi-
well as Ref.[7], clearly demonstrated that the critical expo- .. . ) ;
nents of the BS model anaot those of DP. Sornette and tion to an absorbing state. We focus on the absorbing version

i of the BS model, and the extremal version of the CP, to
D°F”'°[8]f %r.‘d Grz(ajssbergler and Zha[r&tl)j have sfhown(;m\_/va illustrate the relations between extremal dynamics and ab-
variant of directed percolation may be transformed via ex'sorbing phase transitions. Our analysis of the spread of ac-
tremal dynamics to display SOC. These studies indicate th

. o EHVity leads to refined values for the exponerdtsy, v, 8,
self-organized criticalitSOQ [10] under extremal dynam- andzg, and for the critical threshold of the BS model. Finite-

ICS anses dbe_csuse hthe system is driven [tjo ab‘?”t'cal POINLize ‘scaling analysis of stationary properties at the critical
ass_omate with a phase tran_smon to an absorbing Eaite point yields estimates of the exponent ratiBév, and
as is also the case for sandpi(@4]. v

. . . ylv,.
The purpose of .th's work is to explore the connection * gy gies of modified BS models have shown that scaling
between scale invariance under extremal dynamics and phasg, erties are insensitive to changes that preserve its basic
symmetries(that is, invariance under translation and reflec-
tion) [15-17, pointing to the existence of a BS universality
*Electronic address: dickman@fisica.ufmg.br class. Nonextremal models that exhibit a phase transition to
"Electronic address: gimg@fisica.ufmg.br an absorbing state, and that possess these same symmetries,
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and no additional ones, belong generically to the directeébsorbing phaseotherwise it is in theactive phase.
percolation(DP) universality clasg§18,19. Here we show A simple model exhibiting a phase transition to an absorb-
that such models fall in a “extremal-DP” universality classing state is thecontact proces$14]. Here we consider the
when modified to follow extremal dynamics. Thus extremalone-dimensional version. There are three sets, conve-
dynamics is a relevant perturbation for absorbing-state tramiently denoted a®y(i)=i andv.(i)=i+1, with associated
sitions, just as was shown by Sneppen in the context of inprobabilitites p, and p,=(1-py)/2. In terms of the usual
terface depinning2]. parametrization[14,23, po=1/(1+\), where \=0 repre-
The balance of this paper is organized as follows. SectioRents the rate of spread of activityn the “epidemic” inter-
Il presents a general scheme linking ordinary absorbing-stafgretation of the CP, active sites represent infected organisms,
phase transitions and extremal dynamics via an intermediaiactive sites susceptibles, andis the infection ratg. The
“extremal-absorbing” model. In Sec. Il we describe ourypdating rules aré,=0, f,=1. In other words, an active site
simulation results. Our findings regarding scaling and univerhas a probability per unit time of 11+\) to become inac-
sality are discussed in Sec. IV. Mean-field analyses are prejye, while an inactive sitej becomes active at rate
sented in Appendix A, and an improved simulation algorithmy n,_ (j)/[2(1+\)], wheren,(j) is the number of active neigh-

in Appendix B. bors of sitej. The one-dimensional CP exhibits a continuous
phase transition between an absorbing phase and an active
IIl. ABSORBING STATE MODELS AND EXTREMAL one at\,=3.297 85[20,22,23.
DYNAMICS It is convenient to associate the control parameter with the

updating rulef rather than with the probabilitiep,. We

In this s_ectlon We examine h(.)\.N a stochastic model W'thEherefore reformulate the CP as follows. With the sgj$)
an absorbing-state phase transition may be transformed o4 (i) defined above, we take,=1/2 andp,=1/4, and
exhibit SOC under extremal dynamics. We begin, for geners: - U* ' ko= P.=2/4, an

ality, by defining a rather abstract scheme, and then discu&eﬁneq:)‘/(lﬂ)' The updating functions are

specific examples. A large class of models exhibiting an {1, w.p. g,

absorbing-state phase transition may be formulated as fol- fo= (1)
lows [20-23. Consider a stochastic proceSsefined on a 0, wp. 1-q

connected graplgy of N sites. (G consists of a set of sites (‘w.p.’ denotes “with probability}, and

with links between certain pairs of sites. Typical examples

are a ring ofN sites, and thel-dimensional hypercubic lat- 1, if o(itl)=1

tice 79, with links between nearest neighborEhe stateo (i) B

of sitei is 0 or 1, the latter value denoting an active site, the f.=11w.p.q if o(ix1)=0. 2

former an inactive one. For each siten G we define a
neighborhood (i) C G, or, more generally, a set of neighbor-
hoodsuv(i),vs(i),...,v,i). It is easy to verify that the transition rates satisfyO
The dynamics ofS proceeds in steps. Each step involves— 1)/w(1—0)=n,\/2, just as in the original formulation.
choosing an active site (the central sitefor this step, at  The critical valueg,=0.767 33.
random, and changing the states of the sitagiipaccording The following three-site contact proce€sP3 will play
to a certain rulef. In case there are two or more neighbor-an important role in our analys[24]. For each site we de-
hoods, one of themy,(i) say, is chosen at random from the fine the sev(i)={i—1,i,i+1} (the central site and its nearest
collection, with probabilityp,, and a rulef, is applied to the neighbors. The updating functiorf takes values of 1 and 0
site or sites in,. In generalff (or f,) is a probabilistic rule. At~ with probabilitiesq and 1-q respectively, independently at
each step the number of active sites may change, and if &ch of the three sites n(i). (In Ref. [24] this is called
any moment there are no active sifegi)=0, Ui € G], the  model 3) Simulations of the CP3 show that it exhibits a
process has fallen into an absorbing state and there is reontinuous phase transition @¢q.=0.635 233).
further evolution. Otherwise the dynamics proceeds to the We shall assume that the processs defined so that the
next step. control parameterésuch agy) are associated with the updat-
Using o, to denote the entire set of activity variables ing rule f. Each time a site is updated, the valuef ohay be
o(1),0(2),...,0(N) at stepn, the dynamics generates a se- determined by comparing a random numBewith the pa-
guenceoy, 0y, ... starting from the initial configuration,. It rameter in questior(This is of course the usual procedure in
is frequently of interest to associate a continuous time varisimulations) In the CP3, for example, we take-1 if x<q,
ablet with the process. This is usually done by associating @nd zero otherwise, wheseis uniformly distributed on the
time incrementAt=1/N, with each step, wherél, is the interval[0,1]. Call the random number associated with the
number of active sites just before the step is realized. Wénost recent updating of siiex;, so thato(i) =0 (q—x) with
define theorder parameteras p(t)=Proljo,(i)=1], i.e., the O the unit step function(The initial values of thex; are
fraction of active sites at time (The event space here is the assigned according to the state varialetég. For example, if
set of all realizations of the process up to timestarting all sites are initially active, we draw the initia from the
from a given initial probability distribution on configuration distribution uniform on[0,q].) For the CP, Eq(1) requires
space. If the stationary order parameter, defined bythat we update the central sitavith a number chosen uni-
lim,_,..limy_,..p, vanishes, the process is said to be in theformly from [0,1]. According to Eq.(2), the same applies

O,w.p.1—q
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when updating amactive neighbor(i+1), but when updat- distribution p(x) exhibits a step-function singularity af .
ing anactive neighbor, the random numbgris drawn from  Extremal dynamics effectively “pins” the singularity @fe.
the interval[0,q], since an active neighbor remains active. The foregoing remarks obg, obtain in the infinite-size
Summarizing, we have shown how a stochastic proSess limit; for finite N there is a nonzero probabilitffor q<1),
may be formulated using a set of random variablesuch that all sites havex>q so that the system eventually be-
that sitei is active ifx; is smaller than a certain parameter comes trapped in the absorbing stafEhe mean lifetime,
S suffers an absorbing-state phase transitiomgat,. We  however, is expected to grow exponentially with for g
now define two related processék;, and Sg. The former,  >0.g.)
extremal absorbingrocess, is obtained by taking the central  In summary, ifS exhibits an absorbing-state phase transi-
site asthe active site having the smallest, xather than tion, thenSg, should as well, although not necessarily at the
choosing it at random from among the currently active sitessame value of. The distributionp(x) possesses a step func-
As in the original process, if there are no active sitgge.,  tion singularity in both cases. Near the critical poiff
X;>d, Uje G), the process has reached an absorbing con=q.) of the original process$ we expectp~ (q—q.)?, with
figuration and the evolution ceases. Thtis, possesses an g the critical exponent associated with the order parameter.
absorbing state, and since the original proc8ssxhibits a  Below the upper critical dimensiofd,=4 for DP[18,19),
phase transition between an active and an absorbing phase @ 1. In the supercritical regime &g, on the other hand,
the control parameteris varied, we expecf, to as well, at p=JIp(x)dx= (q-qcg) sincep(x) jumps from zero to a finite
some valuegy. . (The reason is that the relative likelihood of \g)ye atx=ge. Thus the order parameter exponghtis
generating and destroying active sites varies gjtjust as in unity in Sga. ’

S.) Mean-field theory(see Appendix Ayields q;=q.. Due In Sg, the central site is always chosém the N— o
to the different correlati_o_ns generated und.er_ extremal dyfimit) from the setfi :X <0}, just as inSg, at its critical
namics, however, the critical valug g of Sga is in general  point. Since the order parameter is zero in the latter case, we
different fromg. _ ~ may assert that extremal dynamics effectively tunes the order
We define theextremalprocessSg by relaxing the condi- parameter to zerdp approaches zero from aboveNs- .)
tion in Sgp, that the gxtremal sitemust _be active_{i..e., have  aAs we have seen, the existence of sites With < x< q be-
x;<q) for the dynamics to proceed. & is the original con-  comes irrelevant inSg,, in the infinite-size limit. In other
tact process, thefie is a process in which either the minimal \yords, S is identical to the critical procesSg, in this limit.
site or one of its nearest neighbors is updated at each step. (tarting from the same initial configuration, and using the
S is the CP3,S¢ is the familiar Bak-Sneppen model. Note same set of random numbers, the same sequence of sites will
that Sg has no absorbing state, hence no phase transition tge updated in the two processes.
such a state. Its stationary properties are nevertheless inti- gjnce the extremal version of the CP3 is the familiar Bak-
mately connected with the critical-point properties&f. Sneppen model, we shall refer to the GRas theabsorbing
__ Of particular interest is the stationary probability density Bak-SneppetABS) model. Our objective is to characterize
p(x) of site variables under extremal dynamics. In the Bak+the pehavior of the ABS model and of the extremal and EA
Sneppen model, as is well known, the density is a step funczersions of the contact process. The ABS model is closely
tion, p(x)=CO(X-q.e)O(1-x), in the infinite-size limit. related to thef-avalancheprocess studied in Ref5]. An
[C=1/(1-q.g) is the normalization factorWe expectp(x)  f-avalanche(in the present notationg-avalanchg begins
to exhibit a step-function singularity in any extremal modelwhen the minimal site variabbe,,,<d, the minimum having
Sg [15]. This feature is in fact already present in the originalbeengreaterthanq at the preceding step or steps, and con-
model S at its critical point, because at the critical poot  tinues until the minimum is once agairq. (As q ap-
=(, the stationary density of active sitébaving x;<q)  proachesy.g from below, the mean avalanche duration di-
tends to zero as the system sMegoes to infinity. The dis-  verges) The dynamics of the BS model continues, regardless
tribution on the “allowed” regiorx>q is uniform, since the  of whether a given avalanche has terminated or not. But in
x; are drawn from a uniform distribution. Thugx) jumps  the ABS modek,,,> q represents an absorbing state and the
from zero to a finite value at=q.. In the supercriticalre-  dynamics ceases. In the BS model, it is common to analyze
gime (g>q.), p(x) is equal to a constanq; for x<q, so that the properties ofj-avalanches in the stationary state. It is
gp=p (the order parametgrand takes a different constant similarly of interest to study stationary properties of the ABS
value, p,, on the intervallq,1]. Once again, the stationary model, attained once the system has relaxed, after an initial
density is discontinuous at=g. transient period. We may also study the mean lifetime of the
What holds forS also holds qualitatively foiSg,. The — active state as a function of system size. Another approach to
critical valueq, g may, as noted, differ from, but sinceSg,  studying absorbing-state phase transitions consists in follow-
exhibits an absorbing-state phase transition, its stationaring the spread of activity starting from a single active site.
distributionp(x) also has a step-function singularity. Just atThis spreading phenomenon in the BS model was studied in
d=0.e, the order parametgr=0, but asN— c the survival Refs.[4,5], where it is called the BS branching process, and
time of the process tends to infinity. This means that thdn Ref.[7] under the name of the BB) model.
process can survive indefinitely, with the choice of the cen- The assertions regarding extremal and extremal-absorbing
tral siterestricted to the set havingskq. . The presence of models are supported by mean-field the@WFT), as dis-
active sites in the rangg, ¢ <x=<gq is then irrelevant, since a cussed in Appendix A. In particular, for the ABS model

site with x<qg is always available. Thus faj=q.g, the :g(a(x—%), just as in the MFT of the original BS model. In
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the extremal and the extremal-absorbing contact process, the 0 T T
stationary probability densities exhibffor q>q,g=1/2),
two discontinuities, one at=x=0?/(3q-1), the other aix
=g> k. [These coalesce gt=1/2. Note that the parameter
continues to influence the form gfin the extremal contact
process, due to the nature of the updating rule, Ejsand
(2).] These predictions are in qualitative agreement with
simulation.

In the following section we report our simulation results.
Although many models are considered, they may be orga-
nized as follows: absorbing, nonextrem@&P3; extremal-

absorbing(ABS and CR,); extremal(CPg). In some cases 7 el
anisotropic versions are also considered. 4 5 6 7In |_8 9 10 M
1. SIMULATION RESULTS FIG. 1. Stationary activity densitffilled symbol$ p versus sys-
) _ _ tem sizeL in the one-dimensional ABS model at the critical point.
A. Absorbing Bak-Sneppen model: Stationary properties Open symbols, difference betwegnand the fitting function, Eq.

Taking advantage of the fact that the minimal site is al-(3) shifted vertically for visibility.

most always<q. g, we have devised a highly efficient simu- _
lation algorithm, as described in Appendix B. Using thisratio m=p?/p? at the critical point. The estimates for de-
method, we conducted extensive studies of the onecrease slowly with., and appear, when plotted verdus-25,
dimensional ABS model. We initialize the system with all to approach a limitingL — «) value of 1.03(5) (see Fig. 3.
sites active and allow it to relax until mean properties fluc-(For the one-dimensional CR=1.1737 at the critical point.
tuate about stationary values. Stationary properties are oli=ssentially the same results are obtainedgfef.667 01 and
tained from temporal averages over the set of surviving re0.667 02.

alizations. Each step corresponds to a time intervalAbf
=1/N,, with N, the number of active sites just before the

: . ; B. A ing Bak- I: f activit
updating is performed. Results for the stationary order pa- bsorbing Bak-Sneppen model: Spread of activity

rameter(i.e., the density of sites witk<q), confirm that in Scaling properties at an absorbing state phase transition
the supercritical regimég > q. g), the order parameter grows are also reflected in the spread of activity from an initially
linearly with g—q g, as anticipated in Sec. II. localized region28]. In spreading simulations of the ABS

We study the finite-size scaling behavior of the stationarymodel we start the system with a single sig<q and all
order parametep and of the lifetimer at the critical point. ~ Others above this valu€This is completely equivalent to the
[ is obtained from an exponential fit to the survival prob-BS branching process studied in Reff4,5,7.) At q=q.g,
ability Py(t).] The expected finite-size scaling behaviors atthe process generates a scale-invariant pattern of activity that
the critical point argp~ LA+ and 7~ L"/1. We performed ~May be characterized by power laws for the survival prob-
simulations ag=0.667 01 and 0.667 02, the latter being theability P(t), the mean number of active sitegt) and the
preferred literature value for the threshold in the one-mean-square distand®@?(t)=[n(t)]™XZ;rf(1)). [r;(t) denotes
dimensional BS model, while the former is favored by thethe position of thgth active site at time. Note thatn(t) is
results discussed in the following section. We studied sys-

tems of 1000, 2000, 4000,., 32 000 sites in simulations of 20—
2X 10" to 3x 10° time steps.

For L=4000-32 000, the results for the order parameter 18 L
follow a power law with B/v, =0.7585). The data for
smaller system sizes, however, show systematic deviations 161
from a pure power law, leading us to seek a correction to
scalipg term; a correction decayind. "2 leads to a good fit. ; 1L
We fit the expression

—_ B b 121
Inp:_ZInL_LTQ 3

to the data fol. = 1000, allowingB/v, andb as adjustable
parameters; the best-fit values gfdv, =0.7697) and b 8 ! ! ! !
=3.6920). The simulation data, and the difference from best
fit of Eq. (3) are plotted in Fig. 1, showing the high quality of
fit. The data for the “fetime, Using System sizes of 125, 250, FIG. 2. Mean lifetimer (f|||ed Symb0|3 versus System siZein
...,8000 yield » /v, =2.121), with no obvious correction the one-dimensional ABS model at the critical point. Open symbols,
term (see Fig. 2 We also determined the stationary moment+/L"/" (shifted vertically for visibility).

InL
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FIG. 4. Local slopes(t) versus 11 in the ABS modelqg values
(bottom to top 0.667 00, 0.667 01, 0.667 02, and 0.667 03. Inset,
data forq=0.667 01 plotted versus ©/2°

FIG. 3. Moment ratiam for the ABS model versus system size
L0925 Ppoints, simulation data; line, best linear fip=1.0295

+0.268.79-25
~ -1/4
taken over all realizations, including those that have become InPs=-3dlnt+gpt™"+C, (5)
trapped in the absorbing state at or before tim&he scal- _ ]
ing laws are typically written in the form where C is a constant and the best-fit values afe

=0.0841) and ¢$»=0.115. The same value faf is found
using the data fog=0.667 02.[The choice of a correction
term decaying as /4 is motivated by the fact that the local

] N . o _ slopesd(t) andzft) are essentially linear when plotted ver-
relations that have been verified to high precision for variougyst-1/4. as seen in the inset of Fig.]4n Fig. 5 we plotPq

exampleg21,23. (We usez, to denote the spreading expo- and the ratio oP to the fitting function, Eq(5); the ratio is
nent, to avoid confusion wnh_thdynamlcalexponemz.) The  geen to be essentially constant for50. The mean-square
appearance of power laws is commonly used to locate thgisplacement may also be fit using an asymptotic power law

critical point[23]. _ ~and correction term. We find
The spreading expone#tis related to the avalanche size

exponentr, defined(in the BS modelvia Pp(s) ~s™7, where
Pp(s)dsis the probability of an avalanche having a duration
betweens and s+ds Thus the survival probabilityP(t)

= [{Pp(s)ds, implying 7=1+36.

Ps~t7%, n~t7, R~ to, (4

InRZ=znt— gt ™+ C', (6)

with z5,=0.921(10) and ¢g=1.703.

We performed spreading simulations of the ABS model aty It has been argued thaf=0 quite generally for extremal

_ ynamics[5,25]. Our data for the one-dimensional ABS
g;ghefgaigét% .r?GVT/;sO,fo(I)Ib?SZ dotp (:66217 r?é\;drarl]rzjdm Ot.i?nGe7 gfmodel support this conclusion, on a double-logarithmic plot,

about 2.7 10°; the total number of realizations ranged from n(t) clearly grows more slowly than a power law. White
4 10° to 1.6x 10°, depending on the value of To locate

the critical point we plot the local slop&(t)=dIn P/dInt, 0.0 S
versust™. For q<g. the local slope is expected to veer 02k |
downward at large times, and vice verfidumerically, &(t) '
is given by the slope of a least-squares linear fit to the data in 04 L |
an interval(ty, 20t], with geometric mean] On the basis of “
the local slope datgsee Fig. 4 we conclude thato, g o o6l i
=0.667 011). This is consistent with previous estimates, £ I
which place the threshold at 0.667(82[7] and 0.667 0R) 08| _
[5]. [We did not find analyses of the local slopegt) or A
Z,(1), defined analogously ta(t), useful in locating the criti- 10} .
cal point] »
Analyzing the data at the critical point, we are unable to 1.2 L
obtain good fits toP,n, and R? using simple power-law 0 2 4 6| ts 10 12 14
expressions. Including a subdominant power-law correction n
in the relations of Eq(4) greatly improves the quality of fit. FIG. 5. Survival probabilityP(t) in the ABS model at the criti-
In particular, the survival probability can be fit quite accu- cal point,q=0.667 01. The nearly constant function represents the
rately using ratio of Pg to the fitting function, Eq(5).
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12 e TABLE II. Spreading exponents for the CP3 andgzPnhodels
and the anisotropic absorbing Bak-Snepp@&ABS) model in one
dimension.

10 - .

Exponent CP3 CE\ AABS
81 ] s 0.1622) 0.085520) 0.2345)
c o n 0.3122) 0 0
6 r 11 Zsp 1.2654) 0.93220) 1.42510)
4ar 4 ] activity in the supercriticalregime follows a simple pattern:
*‘ﬁ L the sizeR of the active region grows linearly with time, and
o 10°10'10210%10410510° g '€g g p y =
o Ll v v v i the number of active sites grows «t® Our observation of
10° 10" 102 10° 10* 105 10° subdiffusive spreading at the critical point motivates us to
t investigate spreading in the supercritical ABS model. We

find that spreading is indeesbiblinear For example, using
q=0.75 in a study extending tz=2 X 10° to avoid transient
effects, we obtairR?~tX with y=1.321) andn~t* with A
=0.681). (The exponent governing? should be twice that

for n, since active regions have a finite activity density in the
supercritical regime. Similar exponents are found faog
=0.70 and 0.78. Once again, extremal dynamics slows the
growth of activity.

FIG. 6. Mean number of active sitegt) in the ABS model at
the critical point,g=0.667 01. The solid curve represents the fitting
function described in the text. Inset, a similar plot, for the critical
anisotropicABS model.

=0 is compatible withn(t) growing without limit ast—
[for example,=(Int)%, as suggested in Ref7]], our results
support the conclusion thatt) saturates at &inite value n,
at long times. Specifically, we are unable to fit the long-time
behavior using an expression of the form (Int)%. On the
other hand, we findl In n/dIntect™, with w=0.149, sug- We performed spreading simulations of the CP3 model,
gesting thatn(t) =n..exp(-ct™®). In fact an excellent fit is using the approach described in the preceding section. Each
obtained using=1.92 andh..=14.574, as can be seen in Fig. realization is followed up to a maximum time of6L0%.
6. [Saturation ofn(t) does not occur on the time scale of the Using power-law behavior oP¢(t) andn(t) as the criterion
simulation; for the anistropic case, shown in the inset of Figfor criticality, we find q.=0.635 2%3) for the CP3.(Note
6, saturation is in fact evidert. that this is some 5% smaller than the critical value of the
In the absorbing phas@<q.g), the survival probability ~corresponding extremal modehnalyzing the local slopes,
must vanish as— . Our data followP,~t% Y7, wherer ~ We obtain §=0.1622), 7=0.3122), and z;,=1.2654).
~|d=0cg/™, with 1,=2.542). On the other hand, fog These values are fully consistent with those for directed per-

>(q.e, the survival probability tends to a finite value &s colation (see Table li, confirming that the CP3 model be-
—.». We obtain lim_.P.=P,~(q-0. E)g' with g’ longs to the same universality class as the original contact

=0.201). (In DP and allied modelg’ =8 [28], but this need prOAcestS_i(_ i betur remal and remal
not hold for models in other universality clasge3ur results striing difierence between extremal and nonextrema

for the critical exponents of the ABS model are summarizednOdGIS with an ahsorbing state is that the spread of activity

and compared with those for the contact process in Table (in the critical process is much slower in the former. This is of
gourse reflected in the valug=0 for extremal models

In the CP and other nonextremal models, the spread O?While, for example7=0.314 for DP in one dimensionand

. e o .
TABLE I. Critical exponents for the one-dimensional absorbing in the subdiffusive growth iR" in the ABS model. In Figs.

Bak-Sneppen modé¢ABS) and contact proceg€P). CP exponents 7 and 8 we compare typical evolutions in .the ABS r.nOdel.a.nd
from Refs.[23,40). its nonextremal analog, the CP3, at their respective critical

points. It is evident that the activity spreads much more
slowly in the ABS than in the CP3. A further notable differ-

C. CP3 model

Exponent ABS cP ence is that in the ABS a site can remain active for a very

B 1 0.276494) long time, i.e., while it is not the minimum site or a neighbor
B 0.201) (=pB) of it. Thus the rates of both addition and loss of active sites
n 2.542) 1.733833) are much smaller in the critical extremal process than in the

Blv, 0.771) 0.252085) corresponding nonextremal one.

ylv, 2.121) 1.5807111)
5 0.0841) 0.159473) D. Extremal CP
7 0 0.313684) In light of the discussion of Sec. Il, it is of interest to
Zp 0.92110) 1.265233) study the behavior of other absorbing-state models under ex-

tremal dynamics. As a first step we report simulation results
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for the extremal-absorbing contact procé¢€8-,). We per-  of active sites from the origin grows in a manner similar to
formed spreading simulations to determigg: and the ex- that in the ABS model. We are again able to fit the data for
ponentss, , andz, using simulations running to a maxi- R* using an expression of the form of E¢6), with z,
mum time of 6x 10* in 5 10 independent realizations. We =0.932 and¢g2=2.026. These results strongly suggest that
find q.g=0.794 1%5) for the extremal CP, compared with the CR, belongs to the same universality class as the ABS
0.767 33 for the origina(nonextremal process(Note that, model.
as in the comparison between the CP3 and ABS models, We turn now to the rather surprising behavior of the sta-
Jee> 0. tionary probability densityp(x) in the extremal CP. Recall
As in the case of the ABS model, the decay of the survivathat mean-field theoryAppendix A predicts p(x)=20(x
probability at the critical point follows an expression of the =1/2) for q<q,g=1/2, while for g>1/2 there are two
form of Eq.(5), here with best-fit paramete=0.0855 and  steps, one at=«=0g°/(3q—1), the other ak=q. In simula-
¢p=0.226. The exponeni is essentially the same as found tions of the CR on a ring we find a single step discontinuity
for the ABS model, while the correction term is about twice for q<q,=0.794 15, and, foq> ¢ g, a pair of steps, one at
as large. At the critical point the derivativéInn/dInt  x=q, the other ak=gs<q. The positions of the singularities
~t7%1 again indicating a behavior of the form(t) as obtained in simulatiofusing data for system sizds
=n,exp(—ct™®), here withw=0.1. The mean-square distance =100, 200, ..., 1600 to extrapolate the position in the
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FIG. 8. Spread of activity in a typical realiza-
tion of the critical ABS modelq=0.667 0).
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FIG. 9. Positiorg of the singularity in the stationary probability
density of the extremal CP. The upper line of singularitiesq,
bifurcates fromgs at the critical valueg, g.

FIG. 10. Stationary probability densify(x) in the CR for q
=0.794(left) andq=0.85(right); system size.=1600.

R?(t) as the mean-squaradius of gyrationi.e., the distance

is measured relative to the current center of mass of the set of
active sites, rather than to a fixed origin. This is done to
eliminate a spurious contribution due simply to the overall
drift in the active region. For the anisotropic ABS model
R?(t) may again be fit with an expression of the form of Eq.
F§6), with z,=1.42510) and ¢g=2.3(2). The exponents and

infinite-size limiY, are shown in Fig. 9. The lower singularity
(s is seen to bifurcate from the line of singularities just at the
critical point, in qualitative agreement with MFT. Note how-
ever that the position of the singularity is not constant for
0<0g, as predicted by MFT.

The densityp(x) is shown for q=0.794=q.¢ and g
=0.85 in Fig. 10. In the latter case it is evident that the ste Sp— : .
at x=q is sharp(this is true even for small systejns\ote Z;p are quite (_jlfferent from thosg of the isotropic r.nodel..De—
that its position is predicted exactly by mean-field theory. Al SPité these differences, we again fine0 for the anisotropic
of these observations highlight the fact that the step=atis ~ Mm0del- As before, the mean number of active sité$ satu-
not related to a phase transition, but derives instead from thi&tes at long times, more rapidly in fact than in the isotropic
singular nature of the updating rule, B@). This rule treats ABS model(see Flg'ﬁf insg¢tWe are able to fit the data well
active and inactive neighbors of the central site differently. Inusing n(t)=n..(1-e™*"") with parameters1,,=5.2063) and
particular, a variablex (associated with a neighbor of the ¢=0.348.

central sitg, lying in the interval[q, 1] is updated td0,1], The nongxtremal model corresponding to the qnisptrqpic
effectively depleting the former interval, so thptx) falls ~ ABS model is a two-site contact process, CP2, which is sim-
suddenly ax=q. ply the CP3 with updating restricted to the central site and its

The step atx=qs, by contrast, is subject to finite-size neighbor on the right. We have verified that the spreading
rounding, and becomes sharper with increasing system sizéxponents of the CP2 model are those of directed percola-
as is characteristic of a critical singularity. The finite width of tion. (Here again, we definB” as the mean-square radius of
the peak ak=q (in the process witly=q.g), appears to be gyration) This leads to the interesting conclusion that a per-
a finite size effect as well, it becomes sharper with increasindtrbation(asymmetric updatingthat isirrelevant for a non-

L, suggesting that the singularities merge in the limit . extremal model is relevant for the corresponding extremal
system.(We note that, because the two sites in the CP2 are
E. Anisotropic ABS model updated in the same manner, the model does not fall in the

. . so-called anisotropic-DP class, for which bonds along differ-
The scaling behavior of the Bak-Sneppen model changeg: axes are present with different probabilitigs].)
when the updating rule is asymmetf9]. The same critical

exponents are found for a highly anisotropic version in
which at each step, only the minimal site and its neighbor on
the right are updatefB0], and for weak anisotropy16,31],
so that one may identify an anisotropic BS universality class. We investigate the relation between extremal dynamics,
In this section we report results of spreading simulations oexemplified by the Bak-Sneppen model, and nonextremal
the anisotropic absorbing BS model. To obtain these resultsnodels exhibiting a phase transition to an absorbing state,
we simulated the anisotropic AB@ the highly anisotropic  using general arguments, mean-field theory and simulation.
version in studies extending to a maximum time of 1.6 The relation between the BS model and directed percolation
X 10P, using 3x 10° realizations. was already suggested some time §4&]. Here we clarify
Analyzing the local sloped(t)=dInP/dInt, we deter- this connection by showing how a generic absorbing-state
mined the threshold of this model to loge=0.723 702). model can be transformed to an extremal one via the associ-
[This is a substantial improvement over the earlier estimatated extremal-absorbing model. The nonextremal precursor
of 0.724@1) [32].] A typical evolution of the critical spread- of the BS model is a three-site contact procfz4], CP3,
ing process is shown in Fig. 11. The local slof¢) yields  which, like the original CP, belongs to the directed percola-
the estimates=0.2345). For anisotropic models we define tion universality class. The BS model and the extremal ver-

IV. CONCLUSIONS
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sion of the CP belong to a common universality class thatheir values will require accumulating larger data sets in
may be dubbed extremal DIEDP). A number of extremal simulations of larger systems, a task we leave for future
dynamics classes distinct from EDP are discussed in[Bgf. work. (The studies reported here were quite demanding com-
another example is the anisotropic BS model. We expect thatutationally, representing approximately 6 months cpu time
further extremal dynamics universality classes exist, for exon an alpha workstation.
ample, an extremal parity-conserving clg34], although ex- In the course of our study we revisit a three-site contact
amples of the latter have yet to be studied. process(CP3 that is the nonextremal analog of the BS
Our results for the critical exponents of the EDP classmodel[24]. We verify that the CP3 belongs to the universal-
which includes the BS model and the extremal CP, are comity class of directed percolation, as expecf&l We define
pared against those of ordinary MR one spatial dimension  extremal and extremal-absorbing versions of the original
in Table |.(Here we have taken the valugs0 andg=1to  contact proces€CP: and CR,, respectively and verify that
be exactfor EDP) The differences between the two sets of their scaling properties are the same as those of the BS
exponent values are evident. Our resuitsl +5=1.0841), model. Our results confirm the relation between DP univer-
andz=v/v, =2.121) are in agreement with the earlier esti- sality (in a nonextremal modeland BS universalityin the
mates[5] of 1.071) and 2.1@5), respectively. Our result is corresponding extremal modetientified some time ago by
however somewhat higher than Grassberger's result Sornette and Dorni¢8]. While these authors find DP-like
=1.0733) [7]. critical behavior in a model with parallel updating, the same
Certain scaling relations are expected to hold among thBehavior is also found in sequentially updated models such
critical exponent$21,23,28. In spreading processes one ex- &S the CP and CP3. Thg essent|al point is that e}II active sites
pectszg,=2v, /v; our data are nearly consistent with this, ar€ treate“d equaIIy_, u?l|l§e in extremal models, in which the
yielding 2v, /- 2z,,=0.02214). The relationg’ =, is also qurrently most active” site is updated at each step. The sta-
satisfied, our data yielg8' - d»,=-0.01314). Finally, we tionary probability density for the GPfollows, in general

consider the generalized hyperscaling relafigs] terms, the prediction; of mean-fi_eld 'Fheory, but certain inter-
esting differences exist, as detailed in Sec. Ill E.

It is clear that when an absorbing-state model is modified
2 1+E 6+ 2n=dz,, (7 to follow extremal dynamics, its critical exponents are al-
tered. Extremal dynamics tends to slow the spread of activity
in d dimensions. Using our data, we find the difference bein the critical and supercritical regimes. One may neverthe-
tween the two sides of this relation to be Q€9 Our results  |ess inquire whether any more general features of the original
are marred by another inconsistency that may reflect corregnodel are preserved under extremalization. A candidate for
tions to scaling or finite size effects, the productsuch a conserved property is the critical dimensinin
(Blv,) M w/v, )y, with the first two factors determined critical phenomena, various universality clasggifering in
from finite-size scaling at the critical point, and the final the symmetry group of the order parameter, or the presence
factor obtained from the decay of the survival probability in of conserved quantiti¢snay share the samd if the alge-
the subcritical regime, should equg@l=1; our data yield braic structure of their continuum descripti¢in particular,
1.093). These minor inconsistencies suggest that one othe power of the lowest-order nonlinear term in the order
more of the exponents may be in error by 5% or so. Refiningparameter, in a Landau-Ginzburg-Wilson effective Hamil-
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tonian is the same. Thud.=4 for all models in then-vector ~ The final term represents updating of the two neighboring
family. Extending this idea to extremal models is question-sites, and is obtained using the mean-field factorization of
able, since there is no continuum description at hdAd. the nearest-neighbor joint probability densitp(x,y,t)

first glance, the notion of extremal dynamics in a description=p(x,t)p(y,t). In writing Eq. (A1) we have associated a
using acontinuousdensity seems problematic, since there istime incrementdt=1/N, with N the number of sites, with
always one and only one extremal sitBe that as it may, it each event.

seems plausible that if the field theory for [)P8,19,34 Equation (A1) admits an infinite set of stationary solu-
were somehow modified to reflect extremal dynamics, theions for whichp(x)=0 on the interval & x<gq. These rep-
dominant nonlinearity would not change, so thigtwould  resent absorbing states. To seek an active stationary solution

retain its value of 4, as in DP. The upper critical dimensionwe let |=[3e?p(y,t)dy, and equate the time derivative to
d.=4 for the BS model was established some time ago byero, yielding

Boettcher and Paczusks7]. Our argument suggests that ex-

tremal versions of other absorbing-state models have the — 3l

same upper critical dimension as the corresponding nonex- PO = 21+ O(g-x)e
tremal model. We hope to test this prediction in future work.

Studying the anisotropic ABS model and its nonextremaiTo determinel we multiply Eq.(A2) by € #* and integrate
counterpart, the CP2 model, we find that anisotropy is a relfrom x=0 to x=q, leading tol=(e"#3-e#9)/[2(1-e#3)],
evant perturbation for extremal DP, while it is irrelevant for so that
the corresponding nonextremal class. In this context we note
the finding, by Dhar and Ramaswamy, that aniotropy is a
relevant perturbation for the BTW sandp(lé1]. The irrel-
evance of anisotropic updating in the CP may be understood o ] _ )
by viewing it as a uniform drift, which can be eliminatéd ~ In the limit 83—, we find, forq>1/3, the singular density
the corresponding continuum descriptiony a Galilean P(X)=(3/2)©(x-1/3). This is precisely the MF result for the
transformation[42]. We suspect that other perturbations, original BS model[When we take3— , the above expres-
such as diffusion, may exhibit a similar pattern of relevancesion reduces tp(x)=(3/2)®(x—-q) for q<1/3. But this den-
sity is not normalized of0, 1] and so must be rejected. We
are left with only absorbing stationary solutions @« 1/3.]
Thus q,g=1/3 in the MFT of theabsorbing Bak-Sneppen

The authors are grateful to Stefano Zapperi and Jaffersomodel. Note that the parametgris irrelevant forq>qce
Kamphorst Leal da Silva for informative discussions, and to=1/3, as was gued in Sec. II.

Paulo M. C. de Oliveira for helpful comments on the paper. A moment's reflection shows that the evolutionggk) in

The authors acknowledge CNPq and FAPEMIG, Brazil, forthe (nonextremagl CP3 model is given by EqA1) with B
financial support. =0, since all active sites are then equally likely to be chosen
as the central site. Taking the lim@g— 0 of the stationary
solution, Eq.(A3), one finds, forg=1/3, the stationary den-

(A2)

S (eh3— g h)
(e -e P +0(q-xeP(1-eh3)’

(A3)

p(x) =

ACKNOWLEDGMENTS

APPENDIX A: MEAN-FIELD THEORY

sity
1. Extremal dynamics as a zero-temperature limit 1 N
. . _ 583-gq7), x<q,
There are several ways of formulating a mean-field theory p(x) = { g( a) a (A4)
(MFT) for extremal models. First we consider an approach 21 g<xs<1.

[11,31 in which the probability of a sité being chosen as
the central site is proportional ®#%; extremal dynamics is
recovered in the limi{8— «. (In the present discussion the
parameterB bears no relation to the critical exponent de-
noted by the same symbol in the main tgxX&pplied to the
BS model, this approach yields the distributiqn(x)
=(3/2)0(x-1/3)®(1-x) whenB— o0 [11,31].

In the ABS model the distributiop(x) evolves via

Equation(A4) confirms that the stationary density ofr@on-
extremal model exhibiting an absorbing state phase transi-
tion is characterized by a steplike singularity, as asserted in
Sec. Il. Forg<1/3, Eq.(A4) yields an unphysical, negative
density, showing thag,;=1/3 for theCP3, in the mean-field
approximation.
The foregoing analysis is readily extended to the
extremal-absorbing contact procé&€$-,) defined in Sec. Il.
q The rate of events is again given by [Je #p(x)dx. At each
—e'ﬁxp(x)(q—x)+3f e Pp(y,tydy event, there is a probability of 1/2 that the central site
0 (which must havex<q) is replaced, while with probability
q 1/2 a neighbor is updated. Thus the loss terms in the equa-
—ZP(XJ)J e Pp(y,tdy. (Al)  tion for p(x,t) are «1/2)[eP®(q-x)+I]p(x). The gain
0 term corresponding to updating of the central site is simply
The first term represents a site with vakibeing selected as 1/2, but for updating a neighbor it ig1/2)[1-P(q)
the central site, which is only possiblesf<q. The second +(1/9)®(q-x)P(q)], whereP(x)=Jgp(y)dy is the probabil-
term reflects updating three sites with variables uniform ority that a given sitel hasx; <x. (The reason is that when
[0,1], with the integral representing the overall rate of eventsupdating arective neighbor, the variable is chosen from the

ap(xt)
o
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distribution uniform or{0,q].) Thus the MF equation of mo- ap 1 _ | O(q-x)
tion is =P+ S| 2-Pla)+ T P@-pk
J 1_ | 0(q-x) (A12)
Pz BXp(x)®<q—x)+—<2‘P<q>+q— e . . . |
at 2 2 with 1 = [5e#*p(x)dx. To find the stationary solution we write
-1
XP(q) - p(x)> : (A5) — . 2+[q70(q-x) — 1]P(q)
p(x) T : (A13)

To find the stationary solutiop(x) we first note that for 0  Integrating from 0 toq and solving forP(q) we find
<x<q, settingdp/dt to zero yields

29-v)
_ _ = Al4
p(x) = Al/(I + &), (AB) @ q+ygqt-1) (AL4)
whereA=2+(q1-1)P(q). Integrating Eq(A6) from x=0 to where
x=g, we find 1 1+1
Al du Y= E n—l PR (A15)
P(q)=Aq——f —. (A7) : _ :
BJepal +u Now multiply Eq.(A13) by € and integrate from 0 to 1 to
obtain
If we now multiply Eq.(A6) by € ¥ and integrate over the . T
same interval, we obtain 1=A e Pdx A e PXdx AL6
) 1+ | +e P (A16)
A(' du ° K
/—.),L_Bq T+a_ 1 (A8)  where A=2/[q+(q1-1)] and A’=yA/q. If P(q)>0, the

first term on the right-hand side of EGA16) is nonzero and

; —o_ 1 ; i . Equating the first term to unity then
leading toP(q)=2-q~! in the stationary state. We see that domlnatef 52‘58_’°° =q erm "o untty t
g.e=1/2 as in the MFT of theoriginal contact process. leads toy=q°/(3q-1)=«, and then td>(g) =2 -q" which is
Evaluating the integral in Eq(A8) one finds I=(e* positive for g>1/2. A simple calculation then yields the

gy g — 2 _ : _distribution of Eq.(A10) in the limit 83— .
e™)/(1-e™), wherex=q"/(3q-1). The stationary den If g<1/2 the above solution is not valid since it implies

sity Is P(g) <0. We therefore také(q)=0, implying y=q, and so
o 1 (P —ePN1+(2-qH0(q-x)] A=A’=2. Equation(A16) now reads
=— . (A9
P e e +eP(i-emB@-x 2 et
1:2q+—lnI+ - (A17)
Forq>1/2, we havex<q, and in the limitg— oo, B €
e Solving forl and inserting the result in EGA13), we find in
0, x<k, this case lim_..p(x)=20(x-1/2). These results have been
1 verified via numerical integration.
_ -, K<X<Q(Q,
p(X) =4 (A10)
1 2. Extremal dynamics on a complete graph
a’ X=>q, Another approach to formulating MFT for the BS model
\

considers extremal dynamics on Brsite complete graph or
which is normalized and exhibits step-function singularitiesrandom-neighbor modétwo neighbors are selected at ran-
at x=x andx=q. For q<1/2 on the other hands>q and dom each time a site is updajethe stationary densitp(x)
Eq. (A9) does not yield an acceptable probability density,becomes a step function in the infinite-size limit
and we conclude that the only stationary state is the absorljf12,16,38—4(]. We now extend this approach to the ABS
ing one. The critical point of the GR thus falls atg.g model. LetP(x)=Prolx, <x]=[gp(y)dy be the distribution

=1/2 in the MFapproximation. function and letQ(x)=1-P(x). By definition Q is a nonin-
Taking 8—0 in Eq. (A9), we obtain the probability den- creasing function withQ(0)=1 andQ(1)=0, sincep(x)=0
sity for the original CP, outside the interva]0,1].
Activity in the ABS model is predicated on the minimal
29-1 X < site X,in being smaller tham; the probability of this event,
_ o0 9 under the MF factorization, is 1Q(q)]N. Given Xpn<q,
pX) = 1 (A11) updating the extremal site and two neighbors results, on the

-, X>(. average, in the incrementdP(x)=(1/N){-[1-Q(x-)N]
- 2P(x) +3x}, wherex. = min{x, g}, so that the first term rep-
Finally, for the extremal CP, the equation of motion is  resents loss of the minimal site, the second removal of two
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neighbors, and the third random replacement of the three siteariable, x,,,,, must be identified at each step, it becomes
variables with numbers uniform di®,1]. If we adopt a time  important to devise an effective search strategy. An efficient
incrementdt=1/N for each such event, the equation of mo- general-purpose search algorithm uses a binary tree structure

tion for P is to identify x.,i,. One approach?] utilizes a lattice of 2 sites.
P At the first level of selection, each site is compared with one
X : . - .
=1 -Q(x_ N +[1 - HV3x - 2P(x 1)]. of its neighbors and the minimum of the pair selected. At the
at [1=Q0x<, 071 +[1 ~Qla, vl 0] next level the minimum between each neighboring pair is

(A18) selected, and so on, so that at tith level the global mini-
mum is identified.

Note that the evolution ceases@(q,t)=1, i.e., if there are A second binary schemi26] is formulated as follows.
no active sites[SinceQ is nonincreasind(q)=10 Q(x.) Site 0 is placed at the apex of the tree. Site 1 is placed on the
=1] level below the apex, to the left of 0xf <X, to the right if

For q>1/3, the stationary solution to E§A18) corre- X, >X. A sitei is added to the tree in the following way: we
sponds to a density(x) that approaches a step function, go down the tree comparing with the variables, ... ,%_1,
(3/2)0(x-1/3), asN—o. A simple calculation yields the turning left or right depending on wheth&y is smaller or
dominant contribution for largé|, larger thanx;, until we find an empty site. Building the tree

in this way, X, Will occupy the leftmost position in the tree.

(1-30W, x<} In these schemes, maintaining the tree structure, once con-
— 3’ structed from the initial set of variableg, requires a small
Q= 3 1 (A19) number of operations at each step, and is many times more

5(1 -X) +O(eNstN x> 3 efficient than a repeated global search for the minimim. We

find, nonetheless, that a suitabigstricted search requires
(One should note however that the convergence is nonunless cpu time in the stationary state.
form in x, being slower the closeris to the critical value of A special property of the BS modéhared by its absorb-
1/3) For q<1/3 we are unable to find an acceptable staing version, and by other extremal modeis that the mini-
tionary solution withQ<1 (i.e., p>0), for x<gq, and con- mal site falls, with a probability approaching unity as the
clude that only absorbing solutions exist. system size grows, in the interi ,q. ]. At the same time
The analysis of the ABS model on a complete graph conthe density of sites with values in this interval approaches
firms that in the infinite-size limit, the model enjoys the usualzero asN— . This suggests maintaining a list of sites hav-
properties of the BS model fay>q.g=1/3, andfalls into ing Xx<d¢e [27]. Then the search fox,;, may be restricted

the absorbing state far<1/3. to the list, except for the rare instances in which the latter is
The evolution ofP(x,t) in the extremal CP follows, in MF  empty.(For the ABS we must in any case restrict the search
approximation, the equation to sites withx=<q.) If the system is large, so that the typical

number of sites withlk<<q is not small, it becomes advanta-

geous to introduce aecondlist, of sites havingx<q™

<0 When this relatively short list is nonemptsts is usu-

ally the casgthe search fox,,, is restricted to it. In studies
+xQ(p.Yl, (A20) of{he BS rﬁodel, we obtairng the greatest efficiency using

wherex" =min{x/q, 1}. Numerical integration shows that the d  =0.54, while the criterion for the first list was<0.65,

solution converges, for largl, to a stationary distribution thatis, slightlybelow g e. (The occasional need to perform a

consistent with the singular density found above in the limitglobal search, in the rare instances when both lists are empty,
B—oe. is more than compensated by their reduced sizes when using

these valueg.Compared with the binary tree method, our
approach results in threefold reduction in CPU time, in the
stationary state, for a system of 1000 sit@he binary tree
approach may prove more efficient for studying transients,

We have devised an improved simulation algorithm forsince initially the lists will not be short, if thg values are
extremal dynamics models. Since the site with the smallesthosen uniformly or0,1].)

P(xt) 1 1 1 -
J ((9): ):—E[l—Q(x,t)N]+g—EP(X,t)+§[X P(q,t)

APPENDIX B: SIMULATION METHOD FOR EXTREMAL
DYNAMICS
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